SECTION 1

ELECTRONIC SUPPLEMENTARY INFORMATION FILE CXXX CARBAMATES (X = F, CI, Br)

Pavle Mocilac and John F. Gallagher* School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

TABLE OF CONTENTS for the **CxxF**, **CxxCl** and **CxxBr** isomer grids.

JECHON I				
CxxF				
^{1}H	¹ H NMR data Pages 3-16.		. (run in CD_3COCD_3 , acetone- d_6 and $CDCl_3$, deuterated chloroform)	
¹³ C NMR data Pa		Pages 17-2		
¹⁹ F	NMR data	Pages 24-3	0.	
Infi	ra-red data	Pages 31-3	7.	
CxxCl				
¹ H NMR data		Pages 39-5	6 . (run in CD_3COCD_3 , acetone- d_6 and $CDCl_3$, deuterated chloroform)	
¹³ C NMR data		Pages 57-6	5.	
Infra-red data Pages 66-7		Pages 66-7	4.	
CxxBr				
¹ H NMR data		Pages 76-9	0 . (run in CD_3COCD_3 , acetone- d_6 and $CDCl_3$, deuterated chloroform)	
¹³ C NMR data		Pages 92-9	9.	
Infra-red data		Pages 100-		
SECTION 2 Crystal structure data		ucture data	Pages 108-112: (details for nine CxxF CIF structures)	
SECTION 3 Ab Initio calculations		alculations	Pages 112-122: (for nine CxxF, 9 CxxCl and 9 CxxBr).	
SECTION 4 Table 3			Page 123: Selected structural features.	
SECTION 5	Crystals		Page 124: The three CopX crystal samples as examples.	
SECTION 6 Melting point analysis		oint analysis	Page 125: Analysis and trends in the CxxX melting points.	

CxxX series with X = F, Cl, Br

Schematic diagram of the **CxxX** series of isomers (with **Cx** as the aminopyridine group and **xX** as the halophenyl moiety). The series represents the $3 \times [3 \times 3]$ isomer grids comprising 27 mono-halogenated carbamate compounds. The methyl (isomer grid) series is represented by **CxxM** (**M** for CH₃)^{8c} and the methoxy series is **CxxOMe** (OMe = methoxy)^{8a} and both the methyl and methoxy are positioned on the phenyl ring in a similar fashion to **CxxX**.

<u>1.1.</u> The CxxF isomer grid

¹ H NMR data	Pages 3-16.	(run in CD_3COCD_3 , acetone- d_6 and $CDCl_3$, deuterated chloroform)
¹³ C NMR data	Pages 17-23.	
¹⁹ F NMR data	Pages 24-30.	
Infra-red data	Pages 31-37.	

Note: The ¹H NMR data for all 24 synthesised **CxxX** compounds were analysed in CD₃COCD₃, acetone-*d*₆ and CDCl₃, deuterated chloroform. It has been noted that for several **CxxX** compounds (*i.e.* **CpoF**, **CmoF**, **CpmCl**, **CpoCl**, **CooCl**, **CpmBr** and **CpoBr**) that the aromatic C-H were observed as overlapping multiplets and often coincidental with residual CHCl₃ solvent (when run in CDCl₃). The acetone (CD₃COCD₃) spectra often provided an alternative and cleaner looking spectrum in terms of overlapping aromatic multiplets and solvent peaks in the aromatic region.

¹H NMR data and spectra (400 MHz)

 $\overline{I.I.I.I.}$ CppF (Acetone-d₆, 600 MHz): δ 7.07 (2H, m), 7.15 (2H, m), 7.34 (2H, dd, ${}^{3}J$ = 4.9, ${}^{4}J$ = 1.5), 8.33 (2H, dd, ${}^{3}J$ = 4.8, ${}^{4}J$ = 1.5), 9.5 (1H, br s);

1.1.1.3. **CpmF** (Acetone- d_6): δ 7.12 (3H, m), 7.49 (1H, m), 7.58 (2H, dd, ${}^{3}J = 4.5 {}^{4}J = 1.5$), 8.49 (2H, d, ${}^{3}J = 5.2$), 9.73 (1H, br s)

1.1.1.5. **CpoF** (Acetone- d_6): δ 7.33 (4H, m), 7.58 (2H, dd, ${}^{3}J = 4.9 {}^{4}J = 1.6$), 8.5 (2H, dd, ${}^{3}J = 5.1 {}^{4}J = 1.5$), 9.86 (1H, br s) CpoF_Acd6_PM

1.1.1.6. **CpoF** (CDCl₃) δ at 7.11, 7.17 (4H, complex multiplets including CHCl₃ solvent), 7.37 (2H, dd, ${}^{3}J = 5.1 {}^{4}J = 1.5$), 7.71 (1H, br s), 8.45 (2H, d, ${}^{3}J = 4.9$)

1.1.1.7. CmpF (Acetone-d6): δ 7.21 (2H, m), 7.29 (2H, m), 7.37 (1H, dd, ${}^{3}J = 8.3$, ${}^{4}J = 4.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 4.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, {}^{3}J = 4.8, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, {}^{3}J = 4.8, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, {}^{3}J = 4.8, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, {}^{3}J = 4.8, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, {}^{4}J = 2.9, ${}^{5}J = 1.3$), 8.32 (1H, dd, {}^{3}J = 4.8, ${}^{4}J = 2.9$, ${}^{5}J = 1.3$), 8.32 (1H, dd, {}^{4}J = 2.9, ${}^{5}J = 1.3$, 8.32 (1H, dd, {}^{5}J = 1.3), 8.32 (

1.1.1.8. CmpF (CDCl₃) δ 7.11 (2H, m), 7.18 (2H, m), 7.35 (1H, dd, ³J = 8.5, ⁴J = 4.8), 7.82, (1H, br s), 8.14 (1H, d, ³J = 7.2), 8.41 (1H, d, ³J = 4.4), 8.64 (1H $^{3}J = 1.6$);

1.1.1.9. **CmmF** (Acetone-d₆): δ 7.08 (1H, tdd, ${}^{3}J$ = 8.5, ${}^{4}J$ = 2.5 ${}^{5}J$ = 0.9), 7.13 (2H, m), 7.38 (1H, dd, ${}^{3}J$ = 8.4, ${}^{4}J$ = 4.8), 7.48 (1H, dd, ${}^{3}J$ = 8.5, ${}^{4}J$ = 6.4), 8.07 (1H, d, ${}^{3}J$ = 8.1), 8.33 (1H, dd, ${}^{3}J$ = 8.4, ${}^{4}J$ = 1.2), 8.79 (1H, d, ${}^{3}J$ = 2.2), 9.52 (1H, br s);

1.1.1.11. **CmoF** (Acetone-d6): δ 7.32 (5H, m), 8.08 (1H, d, ⁴*J* = 7.8), 8.34 (1H, s), 8.8 (1H, s), 9.64 (1H, br s); CmoF_Acd6_PM

1.1.1.13. **CopF** (Acetone-d6): δ 7.12 (1H, ddd, ${}^{3}J = 7.7$, ${}^{4}J = 4.9$, ${}^{5}J = 1.0$), 7.22 (2H, tt, ${}^{3}J = 8.8$, ${}^{4}J = 2.4$), 7.32 (2H, m), 7.82 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 7.3$, ${}^{5}J = 2$), 7.98 (1H dt, ${}^{3}J = 8.5$, ${}^{4}J = 0.9$), 8.35 (1H, ddd, ${}^{3}J = 4.9$, ${}^{4}J = 1.9$, ${}^{5}J = 0.8$), 9.75 (1H, br s);

1.1.1.14. CopF (CDCl₃) δ 6.90 (1H, dd, ${}^{3}J = 7.5, {}^{4}J = 5.4$), 6.95, (2H, t, ${}^{3}J = 8.5$), 7.03 (2H, m), 7.60 (1H, td, ${}^{3}J = 7.8, {}^{4}J = 1.5$), 7.90 (1H, d, ${}^{3}J = 8.5$), 8.23 (1H, d), ${}^{3}J = 8.5$), 8.23 (1H, d), {}^{3}J = 8.5), 8.23 (1H,

1.1.2. ¹³C NMR data and spectra (400 MHz, Acetone-d₆)

1.1.2.1. **CppF**: δ 113.46, 116.60/116.83, 124.43/124.51, 146.61, 147.67, 151.46, 152.34, 159.85, 162.26;

1.1.2.2. CpmF: δ 110.48/110.72, 113.30/113.51, 118.77/118.80, 131.37/131.47, 146.49, 151.48, 151.86, 152.64, 162.45, 164.88;

1.1.2.3. **CpoF**: δ 117.31, 117.50, 125.35, 125.67/125.71, 128.27/128.35, 138.78/138.90, 146.40, 151.38/151.52, 154.75, 156.73;

1.1.2.4. CmpF: δ 116.53/116.77, 124.40/124.50, 126.12, 136.39, 141.50, 145.30, 147.86, 152.78, 159.76, 162.16;

1.1.2.5. CmmF: δ 110.44/110.68, 113.11/113.32, 118.74/118.77, 124.42, 126.20, 131.31/131.40, 136.27, 141.55, 145.41, 152.30, 152.77/152.89, 162.45/164.88;

1.1.2.6. **CmoF**: δ 117.27/117.46, 124.46, 125.40/125.61/125.65, 126.17, 128.10/128.17, 136.21, 139.00/139.12, 141.47, 145.48, 151.85, 154.35, 156.80;

1.1.2.7. **CopF**: δ 113.18, 116.55, 116.78, 120.04, 124.51, 124.59, 139.11, 149.03, 152.90, 162.20;

1.1.3. ¹⁹F NMR data and spectra (400 MHz, Acetone-d₆)

1.1.3.3. **СроF**: δ 46.29 (1F, m)

1.1.4. IR (ATR) data and spectra

1.1.4.1. **CppF**: 3251 (w), 3166 (w), 3032 (w), 2965 (w), 2899 (w), 2805 (w), 1751 (s), 1626 (m), 1611 (s), 1595 (s), 1531 (m), 1499 (s), 1421 (m).

1.1.4.2. **CpmF**: 3248 (w), 3163 (w), 2958 (m), 2891 (m), 2794(m), 1749 (s), 1628 (m), 1594 (s), 1529 (s), 1485 (s), 1447 (m), 1421 (m).

1.1.4.3. **CpoF**: 3176 (w), 2882 (m), 2741 (m), 1934 (w), 1752 (s), 1630 (s), 1594 (s), 1547 (m), 1498 (s), 1458 (m), 1422 (m).

1.1.4.4. CmpF: 3178 (w), 3124 (w), 3080 (w), 2930 (w), 2822 (w), 1740 (s), 1602 (m), 1588 (s), 1563 (m), 1504 (s), 1477 (m), 1427 (s).

1.1.4.5. CmmF: 3180 (w), 2811 (m), 1745 (s), 1606 (s), 1588 (s), 1559 (m), 1486 (s), 1450 (m), 1425 (s).

1.1.4.6. CmoF: 3192 (w), 2986 (m), 2825 (m), 1743 (s), 1625 (m), 1611 (m), 1560 (s), 1504 (s), 1484 (s), 1458 (m), 1417 (m).

1.1.4.7. CopF: 3182 (w), 3122 (w), 3090 (w), 2959 (m), 2827 (w), 1741 (s), 1609 (s), 1587 (s), 1547 (s), 1500 (s), 1470 (m), 1440 (s), 1416 (m);

<u>1.2.</u> CxxCl isomer grid

¹H NMR data pages 39-56 ¹³C NMR data pages 57-65 Infra-red data pages 66-74 (run in CD_3COCD_3 , acetone- d_6 and $CDCl_3$)

1.2.1. <u>¹H NMR data and spectra (400 MHz)</u>

1.2.1.1. **CppCl** (Acetone- d_6): δ 7.30 (2H, dt, ${}^{3}J = 8.8$, ${}^{4}J = 2.2$), 7.48 (2H, dt, ${}^{3}J = 8.8$, ${}^{4}J = 2.3$), 7.57 (2H, dd, ${}^{3}J = 4.5$, ${}^{4}J = 1.5$), 8.48 (2H, dd, ${}^{3}J = 4.5$, ${}^{4}J = 1.3$); 9.68 (1H, br s);

1.2.1.2. **CppCl** (CDCl₃) δ 7.06 (2H, dt, ³*J* = 8.8, ⁴*J* = 2), 7.31 (2H, m), 7.55 (2H, d, ³*J* = 5.5), 7.98 (1H, br s), 8.44 (2H, d, ³*J* = 5.6);

1.2.1.3. **CpmCl** (600 MHz, Acetone- d_6): δ 7.11 (1H, ddd, ${}^{3}J = 8.3$, ${}^{4}J = 2.2$, ${}^{5}J = 0.8$), 7.20 (1H, ddd, ${}^{3}J = 8.0$, ${}^{4}J = 1.9$, ${}^{5}J = 0.8$), 7.24 (1H, t, ${}^{3}J = 2.1$), 7.34 (1H, t, ${}^{3}J = 8.2$), 7.43 (2H, dd, ${}^{3}J = 5.0$, ${}^{4}J = 1.5$), 8.34 (2H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 1.4$), 9.55 (1H, br s);

CpmCl_HNMR_Acd6

1.2.1.4. CpmCl (CDCl₃) δ 7.04 (1H, ddd, ${}^{3}J = 8.1, {}^{4}J = 2.3, {}^{5}J = 1.0$), [7.14 (1H, br s), 7.17 (1H, t, ${}^{3}J = 2.0$), 7.21 (1H, ddd, ${}^{3}J = 8.0, {}^{4}J = 1.9, {}^{5}J = 1.1$), 7.28 (1H,

1.2.1.5. **CpoCl** (Acetone- d_6): δ 7.35 (1H, ddd, ${}^{3}J = 8.0$, ${}^{4}J = 6.6$, ${}^{5}J = 2.5$), 7.43 (2H, m), 7.57 (1H, dd, ${}^{3}J = 8.0$, ${}^{4}J = 1.0$), 7.59 (2H, dd, ${}^{3}J = 5.2$, ${}^{4}J = 1.6$), 8.5 (2H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 1.5$), 9.88 (1H, br s);

1.2.1.6. CpoCl (CDCl₃) δ 7.19 (2H, m), 7.26 (1H, ddd, ${}^{3}J = 8.8$, ${}^{4}J = 7.0$, ${}^{5}J = 1.6$; includes residual CHCl₃ solvent), 7.40 (1H, dd, ${}^{3}J = 7.7$, ${}^{4}J = 1.6$), 7.44 (2H,

1.2.1.7. CmpCl (Acetone- d_6): δ 7.30 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 7.37 (1H, dd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.47 (2H, dt, ${}^{3}J = 9.0$, ${}^{4}J = 2.8$), 8.07 (1H, ddd, ${}^{3}J = 8.3$, ${}^{4}J = 3$,

1.2.1.8. CmpCl (CDCl₃) δ 7.08 (2H, dt, ${}^{3}J = 8.9, {}^{4}J = 2.7$), 7.27 (1H, dd, ${}^{3}J = 8.2, {}^{4}J = 4.8$), 7.30 (2H, dt, ${}^{3}J = 8.9, {}^{4}J = 2.7$), 7.49 (1H, br s), 8.04 (1H, d, ${}^{3}J = 7$),

1.2.1.9. **CmmCl** (600 MHz, Acetone- d_{δ}): δ 7.25 (1H, ddd, ${}^{3}J = 8.3$, ${}^{4}J = 2.2$, ${}^{5}J = 0.8$), 7.34 (1H, ddd, ${}^{3}J = 8.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{3}J = 3.2$), ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{4}J = 1.8$, ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{4}J = 1.8$), ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{4}J = 1.8$), ${}^{5}J = 0.8$), 7.38 (2H, m), 7.48 (1H, t, ${}^{4}J = 1.8$), ${}^{5}J = 0.8$), ${}^{5}J = 0.8$, ${}^{5}J = 0.8$), ${}^{5}J = 0.8$, ${}^{5}J = 0.8$, ${}^{5}J = 0.8$, ${}^{5}J = 0.8$, ${}^{5}J = 0.8$), ${}^{5}J = 0.8$, 5

1.2.1.10. CmmCl (CDCl₃) δ 7.05 (1H, dt, ³*J* = 8.1, ⁴*J* = 1.8), 7.18 (2H, m), 7.27 (1H, t, ³*J* = 8.2), 7.29 (1H, m), 7.69 (1H, br s), 8.10 (1H, d, ³*J* = 6.9), 8.3 (1H, $^{3}J = 4.5$), 8.61 (1H, s);

1.2.1.12. CmoCl (CDCl₃) δ δ 7.24 (1H, ddd, ³*J* = 8.0, ⁴*J* = 7.0, ⁵*J* = 2.0), 7.29 (1H, m), 7.34 (2H, m), 7.49 (1H, dd, ³*J* = 7.9, ⁴*J* = 1.4), 8.18 (1H, d, ³*J* = 7.3), 8.40

1.2.1.13. CopCl (Acetone- d_6): δ 7.08 (1H, ddd, ${}^{3}J = 7.4$, ${}^{4}J = 4.9$, ${}^{5}J = 0.9$), 7.27 (2H, dt, ${}^{3}J = 8.8$, ${}^{4}J = 2.5$), 7.44 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.5$), 7.78 (1H, ddd, ${}^{3}J = 3.9$, ${}^{4}J = 2.5$), 7.78 (1H, ddd, ${}^{3}J = 3.9$, ${}^{4}J = 3.5$), 7.8 (1H, ddd, ${}^{3}J = 3.9$, ${}^{4}J = 3.5$), 7.8 (1H, ddd, ${}^{3}J = 3.5$), 7.8 (1H, ddd, {}^{3}J = 3.5),

1.2.1.15. **ComCl** (Acetone- d_{δ}): δ 6.98 (1H, ddd, ${}^{3}J = 7.7$, ${}^{4}J = 4.9$, ${}^{5}J = 0.9$), 7.12 (1H, ddd, ${}^{3}J = 8.3$, ${}^{4}J = 2.3$, ${}^{5}J = 0.7$), 7.20 (1H, ddd, ${}^{3}J = 7.9$, ${}^{4}J = 1.9$, ${}^{5}J = 0.8$), 7.25 (1H, t, ${}^{3}J = 2.1$), 7.34 (1H, t, ${}^{3}J = 8.3$), 7.68 (1H, ddd, ${}^{3}J = 9.1$, ${}^{4}J = 6.9$, ${}^{5}J = 2.0$), 7.82 (1H, d, ${}^{3}J = 8.3$), 8.19 (1H, ddd, ${}^{3}J = 5.0$, ${}^{4}J = 1.8$, ${}^{5}J = 0.7$), 9.46 (1H, br s);

1.2.1.17. **CooCl** (Acetone- d_6): δ 7.00 (1H, ddd, ${}^{3}J = 7.3$, ${}^{4}J = 4.9$, ${}^{5}J = 0.8$), 7.20 (1H, ddd, ${}^{3}J = 8.0$, ${}^{4}J = 5.9$, ${}^{5}J = 2.6$), 7.29 (2H, m), 7.43 (1H, dd, ${}^{3}J = 8.1$, ${}^{4}J = 1.4$), 7.70 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 7.0$, ${}^{5}J = 1.9$), 7.85 (1H, d, ${}^{3}J = 8.4$), 8.25 (1H, dd, ${}^{3}J = 5.1$, ${}^{4}J = 1.5$), 10.05 (1H, br s);

1.2.1.18. CooCl (CDCl₃) δ 7.08 (1H, ddd, ${}^{3}J$ = 7.6, ${}^{4}J$ = 5.1, ${}^{5}J$ = 0.9), 7.27 (1H, ddd, ${}^{3}J$ = 8.5, ${}^{4}J$ = 6.4, ${}^{5}J$ = 2.1; includes residual CHCl₃ solvent), 7.34 (2H, m),

1.2.2. ¹³C NMR data and spectra (400 MHz, Acetone-d₆)

1.2.2.1. CppCl: δ 113.43/113.50, 124.48, 130.08/130.23, 131.39, 146.52, 150.36, 151.48, 152.05;

1.2.2.2. CpmCl: δ 113.52, 121.49, 123.24, 126.75, 131.52, 134.82, 146.46, 151.49, 151.89, 152.29;

1.2.2.3. CpoCl: δ 113.48, 125.43, 127.87, 128.33, 129.08, 131.04, 146.47, 147.58, 151.34, 151.53;

1.2.2.4. CmpCl δ 124.40, 124.46, 126.17, 130.16, 131.20, 136.29, 141.52, 145.38, 150.56, 152.47;

1.2.2.5. CmmCl: δ 121.46, 123.21, 124.41, 126.23, 126.56, 131.47/131.56, 134.79, 136.25, 141.57, 145.44, 152.33, 152.52;

1.2.2.6. CmoCl: δ 124.45, 125.47, 126.11, 127.92, 128.16, 129.02, 131.00, 136.27, 141.47, 145.47, 147.80, 151.79;

1.2.2.7. CopCl: δ 113.22, 117.73, 120.13, 124.54, 130.17, 139.02, 149.08, 150.59, 152.36, 152.78.

1.2.2.8. ComCl: 8 113.23, 120.15, 121.56, 123.32, 126.59, 131.48/131.56, 134.79, 139.06, 149.09, 152.22, 152.50, 152.74;

1.2.2.9. CooCl: δ 113.24, 120.20, 125.54, 128.05, 128.20, 129.04, 131.02, 139.29, 147.81, 149.05, 151.70, 152.88;

1.2.3. IR (ATR) data and spectra

1.2.3.1. CppCI: 3163 (w), 3103 (w), 3070 (w), 3029 (w), 2879 (w), 2787 (w), 1748 (s), 1627 (m), 1589 (s), 1543 (m), 1530 (m), 1505 (w), 1486 (s), 1422 (m).

1.2.3.2. CpmCl: 3163 (w), 2882 (m), 2796 (m), 1749 (s), 1626 (m), 1591 (s), 1542 (s), 1530 (s), 1474 (s), 1420 (s).

1.2.3.3. CpoCl: 3165 (w), 2890 (m), 2799 (m), 1747 (s), 1598 (s), 1532 (s), 1509 (m), 1478 (s), 1448 (m), 1423 (s).

1.2.3.4. CmpCl: 3180 (w), 3099 (w), 3074 (w), 3052 (w), 2928 (w), 2872 (w), 2818 (w), 1740 (s), 1610 (m), 1587 (s), 1560 (m), 1486 (s), 1424 (s), 1406 (m).

1.2.3.5. CmmCl: 3182 (w), 3092 (w), 2884 (m), 2813 (m), 1741 (s), 1613 (m), 1589 (s), 1559 ()s), 1477 (s), 1426 (s).

1.2.3.6. **CmoCl**: 3242 (w), 3189 (w), 3049 (w), 2988 (m), 1744 (s), 1618 (m), 1590 (w), 1557 (s), 1478 (s), 1446 (m), 1417 (m).

1.2.3.7. CopCl: 3179 (w), 3119 (w), 3084 (w), 3062 (w), 2955 (m), 2827 (w), 1741 (s), 1704 (w), 1598 (s), 1584 (s), 1542 (s), 1487 (s), 1440 (s), 1404 (m).

1.2.3.8. **ComCl**: 3477 (w), 3176 (w), 3103 (w), 2952 (m), 2822 (m), 2137 (w), 1740 (s), 1611 (m), 1584 (s), 1540 (s), 1475 (s), 1440 (s), 1429 (s).

1.2.3.9. CooCl: 3176 (w), 3115 (w), 2949 (m), 2820 (m), 1743 (s), 1682 (w), 1592 (s), 1582 (s), 1542 (s), 1478 (s), 1438 (s).

$\underline{1.3.}$ CxxBr isomer grid

¹ H NMR data	pages 76-91	(run in CD_3COCD_3 , acetone- d_6 and $CDCl_3$)
¹³ C NMR data	pages 92-99	
Infra-red	pages 100-107	

Ab Initio calculations pages 108-116

1.3.1. ¹H NMR data and spectra (400 MHz)

1.3.1.1. **CppBr** (Acetone-d6): δ 7.11 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 7.42 (2H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 1.6$), 7.48 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.33 (2H, dd, ${}^{3}J = 4.8$, ${}^{4}J = 1.6$), 9.53 (1H, br s);

1.3.1.2. **CppBr (**CDCl₃) δ 7.02 (2H, dt, ${}^{3}J$ = 8.8, ${}^{4}J$ = 2.5), 7.09 (1H, br s), 7.33 (2H, dd, ${}^{3}J$ = 5, ${}^{4}J$ = 1.6), 7.46 (2H, dt, ${}^{3}J$ = 8.9, ${}^{4}J$ = 2.7), 8.46 (2H, dd, ${}^{3}J$ = 5.1, ${}^{4}J$ = 1.6);

1.3.1.3. **CpmBr** (Acetone- d_6): δ 7.15 (1H, ddd, ${}^{3}J = 8.3$, ${}^{4}J = 2.0$, ${}^{5}J = 0.6$), 7.28 (1H, t, ${}^{3}J = 8.1$), 7.35 (1H, d, ${}^{3}J = 8.0$), 7.39 (1H, t, ${}^{3}J = 2.1$), 7.43 (2H, dd, ${}^{3}J = 5.0$, ${}^{4}J = 1.6$), 8.34 (2H, dd, ${}^{3}J = 4.7$, ${}^{4}J = 1.5$), 9.54 (1H, br s);

1.3.1.4. **CpmBr** (CDCl₃) δ 7.09 (1H, ddd, ${}^{3}J = 8.3$, ${}^{4}J = 2.3$, ${}^{5}J = 1.0$), 7.22 (1H, t, ${}^{3}J = 8.1$; includes residual CHCl₃ solvent), 7.27 (1H, br s), 7.32 (1H, t, ${}^{3}J = 2.1$), 7.36 (3H, m), 8.46 (2H, d, ${}^{3}J = 4.8$);

1.3.1.5. **CpoBr** (600 MHz, Acetone- d_6): δ 7.29 (1H, td, ${}^{3}J = 7.8$, ${}^{4}J = 1.5$), 7.42 (1H, dd, ${}^{3}J = 8.0$, ${}^{4}J = 1.5$), 7.50 (1H, td, ${}^{3}J = 7.7$, ${}^{4}J = 1.3$), 7.60 (2H, dd, ${}^{3}J = 5.0$, ${}^{4}J = 1.5$), 7.74 (1H, dd, ${}^{3}J = 8.0$, ${}^{4}J = 1.5$), 7.74 (1H, dd, ${}^{3}J = 8.0$, ${}^{4}J = 1.5$), 8.50 (2H, dd, ${}^{3}J = 4.8$), 9.86 (1H, br s);

1.3.1.6. **CpoBr** (CDCl₃) δ 7.19 (1H, td, ${}^{3}J$ = 7.7, ${}^{4}J$ = 1.6), 7.28 (1H, dd, ${}^{3}J$ = 8.0, ${}^{4}J$ = 1.5; includes CHCl₃ residual solvent), 7.39 (1H, ddd, ${}^{3}J$ = 8.5, ${}^{4}J$ = 7.4, ${}^{5}J$ = 1.5), 7.51 (2H, dd, ${}^{3}J$ = 4.6, ${}^{4}J$ = 1.5), 7.66 (1H, dd, ${}^{3}J$ = 8.1, ${}^{4}J$ = 1.5), 8.22 (1H, br s), 8.55 (2H, dd, ${}^{3}J$ = 4.9, ${}^{4}J$ = 1.6);

1.3.1.7. CmpBr (Acetone- d_6): δ 7.24 (2H, dt, ${}^{3}J = 8.8$, ${}^{4}J = 2.7$), 7.37 (1H, dd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 7.62 (2H, dt, ${}^{3}J = 8.9$, ${}^{4}J = 2.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 8.07 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 4.7$), 8.07 (1H, ddd, ${}^{4}J = 4.7$), 8.07 (1H, ddd, {}^{4}J = 4.7), 8.0

1.3.1.8. **CmpBr** (CDCl₃) δ 7.02 (2H, dt, ³*J* = 8.9, ⁴*J* = 2.6), 7.26 (1H, dd, ³*J* = 8.6, ⁴*J* = 4.8), 7.45 (2H, dt, ³*J* = 8.9, ⁴*J* = 2.6); 7.83 (1H, br s), 8.05 (1H, d, ³*J* = 8.9, ⁴*J*

1.3.1.9. **CmmBr** (Acetone- d_6): δ 7.41 (1H, dd, ${}^{3}J = 8.3$, ${}^{4}J = 1.8$), 7.49 (1H, dd, ${}^{3}J = 8.4$, ${}^{4}J = 4.6$), 7.53 (1H, t, ${}^{3}J = 8.0$), 7.60 (1H, d, ${}^{3}J = 8.0$), 7.64 (1H, t, ${}^{3}J = 1.8$), 8.19 (1H, d, ${}^{3}J = 8.1$), 8.45 (1H, d, ${}^{3}J = 4.8$), 8.91 (1H, d, ${}^{3}J = 1.9$), 9.66 (1H, br s);

1.3.1.10. **CmmBr** (CDCl₃) δ 7.18 (1H, ddd, ${}^{3}J$ = 8.2, ${}^{4}J$ = 2.2, ${}^{5}J$ = 1), 7.30 (1H, t, ${}^{3}J$ = 8.3; includes residual CHCl₃ solvent), 7.36 (1H, dd, ${}^{3}J$ = 8.6, ${}^{4}J$ = 4.8), 7.42 (2, m), 8.08 (1H, br s), 8.16 (1H, d, ${}^{3}J$ = 7.0), 8.41 (1H, d, ${}^{3}J$ = 4.4), 8.66 (1H, d, ${}^{3}J$ = 2.3);

1.3.1.11. **CmoBr** (Acetone- d_6): δ 7.27 (1H, td, ${}^{3}J = 7.7$, ${}^{4}J = 1.5$), 7.40 (1H, dd, ${}^{3}J = 8.2$, ${}^{4}J = 4.6$), 7.41 (1H, dd, ${}^{3}J = 8.1$, ${}^{4}J = 1.5$), 7.49 (1H, ddd, ${}^{3}J = 8.4$, ${}^{4}J = 7.8$, ${}^{5}J = 1.4$), 7.73 (1H, dd, ${}^{3}J = 8.0$, ${}^{4}J = 1.5$), 8.10 (1H, d, ${}^{3}J = 8.1$), 8.35 (1H, s), 8.83 (1H, s), 9.67 (1H, br s);

1.3.1.12. **CmoBr** (CDCl₃) δ 7.18 (1H, td, ${}^{3}J$ = 7.7, ${}^{4}J$ = 1.6), 7.30 (1H, dd, ${}^{3}J$ = 8.0, ${}^{4}J$ = 1.5), 7.35 (1H, dd, ${}^{3}J$ = 8.2, ${}^{4}J$ = 4.8), 7.39 (1H, ddd, ${}^{3}J$ = 8.5, ${}^{4}J$ = 7.7, ${}^{5}J$ = 1.5), 7.65 (1H, dd, ${}^{3}J$ = 8.0, ${}^{4}J$ = 1.4), 8.16 (1H, d, ${}^{3}J$ = 8.0), 8.18 (1H, br s), 8.42 (1H, d, ${}^{3}J$ = 4.3), 8.67 (1H, d, ${}^{3}J$ = 2.2);

87

1.3.1.14. CopBr (CDCl₃) δ 6.87 (1H, ddd, ${}^{3}J$ = 7.6, ${}^{4}J$ = 5.1, ${}^{5}J$ = 0.7), 6.92 (2H, dt, ${}^{3}J$ = 8.9, ${}^{4}J$ = 2.5), 7.34 (2H, dt, ${}^{3}J$ = 8.8, ${}^{4}J$ = 2.5), 7.57 (1H, ddd, ${}^{3}J$ = 8.6, ${}^{4}J$ $= 6.7, {}^{5}J = 1.8$, 7.85 (1H, d, ${}^{3}J = 8.5$), 8.16 (1H, d, ${}^{3}J = 5$), 9.36 (1H, br s);

89

1.3.1.15. **ComBr** (Acetone- d_6) δ 6.99 (1H, ddd, ${}^{3}J = 7.3$, ${}^{4}J = 5.0$, ${}^{5}J = 0.1$), 7.16 (1H, ddd, ${}^{3}J = 8.1$, ${}^{4}J = 2.0$, ${}^{5}J = 1.1$), 7.28 (1H, td, ${}^{3}J = 8.1$, ${}^{4}J = 0.9$), 7.35 (1H, d, ${}^{3}J = 8.6$), 7.40 (1H, m), 7.68 (1H, ddd, ${}^{3}J = 8.7$, ${}^{4}J = 7.5$, ${}^{5}J = 1.3$), 7.82 (1H, dd, ${}^{3}J = 8.3$, ${}^{5}J = 0.9$), 8.20 (1H, d, ${}^{3}J = 4.6$), 9.50 (1H, br s);

1.3.1.16. **ComBr** (CDCl₃) δ 6.99 (1H, ddd, ${}^{3}J = 7.5$, ${}^{4}J = 5.0$, ${}^{5}J = 0.8$), 7.12 (1H, ddd, ${}^{3}J = 8.2$, ${}^{4}J = 2.2$, ${}^{5}J = 1.0$), 7.23 (1H, td, ${}^{3}J = 8.2$, ${}^{4}J = 0.9$), 7.37 (2H, m), 7.68 (1H, ddd, ${}^{3}J = 9.0$, ${}^{4}J = 7.0$, ${}^{5}J = 1.8$), 7.98 (1H, d, ${}^{3}J = 8.4$), 8.33 (1H, dd, ${}^{3}J = 5.2$, ${}^{4}J = 1.5$), 9.97 (1H, br s);

91

1.3.2. ¹³C NMR data and spectra (400 MHz, Acetone-d₆)

1.3.2.1. CppBr: δ 113.50, 119.08, 124.90, 133.26, 146.50, 150.88, 151.49, 151.96;

1.3.2.2. CpmBr: δ 113.53, 121.89, 122.50, 126.10, 129.69, 131.82, 146.45, 151.49, 151.89, 152.32;

1.3.2.3. **CpoBr**: δ 117.16, 125.44, 128.62, 129.74, 134.11, 146.74, 148.83, 151.32, 151.52

1.3.2.4. CmpBr δ 118.88, 124.41, 124.88, 126.18, 133.20, 136.29, 141.52, 145.38, 151.09, 152.39;

1.3.2.5. CmmBr: δ 121.87, 122.47, 124.41, 126.08, 126.25, 129.51, 131.77, 136.26, 141.58, 145.43, 152.34, 152.55;

1.3.2.6. CmoBr: & 117.21, 124.82, 125.47, 126.84, 128.47, 129.68, 134.08, 136.63, 140.71, 144.73, 149.02, 151.78;

1.3.2.7. **CopBr**: δ 108.82, 111.63, 113.33, 113.51, 118.30, 124.46, 133.06, 137.77, 148.87, 157.70;

1.3.2.8. ComBr (CDCl₃): δ 112.87, 119.44, 120.68, 122.46, 125.33, 129.16, 130.58, 138.88, 147.75, 150.87, 151.33, 151.58;

1.3.3. IR (ATR) data and spectra

1.3.3.1. CppBr: 3251 (w), 3163 (w), 3066 (w), 2960 (w), 2894 (w), 2802 (w), 1748 (s), 1601 (s), 1583 (m), 1543 (m), 1531 (s), 1505 (w), 1483 (s), 1420 (w).

1.3.3.2. **CpmBr:** 3243 (w), 3161 (w), 3067 (w), 2957 (m), 2887 (m), 2798 (m), 1750 (m), 1625 (m), 1590 (s), 1541 (s), 1528 (s), 1505 (m), 1468 (s), 1419 (s).

1.3.3.3. CpoBr: 3245 (w), 3160 (w), 3064 (w), 2959 (m), 2884 (m), 2795 (m), 1744 9 (s), 1599 (s), 1531 (s), 1509 (m), 1474 (s), 1443 (m), 1424 (s).

1.3.3.4. CmpBr: 3177 (w), 3094 (w), 3070 (w), 3045 (w), 2930 (w), 2815 (w), 1740 (s), 1607 (m), 1585 (s), 1558 (m), 1482 (s), 1423 (s), 1401 (m).

1.3.3.5. CmmBr: 3235 (w), 3181 (w), 3094 (w), 3042(w), 2932 (m), 2879 (m), 2814 (m), 1751 (s), 1741 (s), 1614 (m), 1588 (s), 1560 (s), 1471 (s), 1424 (s).

1.3.3.6. CmoBr: 3525 (m), 3178 (m), 3042 (m), 2990 (m), 2904 (w), 2842 (w), 1720 (s), 1655 (w), 1611 (m), 1553 (s), 1484 (m), 1446 (m), 1414 (m).

1.3.3.7. CopBr: 3481 (w), 3177 (w), 3096 (w), 2957 (m), 2828 (w), 1742 (s), 1706 (w), 1596 (s), 1581 (s), 1542 (s), 1484 (s), 1438 (s).

1.3.3.8. ComBr: 3177 (w), 3096 (w), 2956 (m), 2821 (w), 1742 (s), 1611 (m), 1586 (s), 1578 (s), 1539 (s) 1469 (s), 1439 (s), 1424 (m).

2. Crystal structure data

Pages 109-112	Full details available from CIF.	
Table 1	Experimental details of the nine CmpX, CmmX and CopX structures.	
Table 2	Selected hydrogen-bond parameters (Å, °)	
and		
Page 123	Table 3: Summary of the CxxX isomer grids with selected structural features.	
Table 1. Experimental details

Experiments were undertaken at 294 K using a Xcalibur, Sapphire3, Gemini Ultra; Mo Ka radiation for eight structures and CopBr using Cu Ka.

Crystal data_(crystal growth)	CmpF _(acetone:CHCl ₃)	CmpCl_(acetone:CHCl ₃)	CmpBr_(acetonitrile)	CmmF_(CHCl ₃)
Chemical formula	$C_{12}H_9FN_2O_2$	$C_{12}H_9CIN_2O_2$	$C_{12}H_9BrN_2O_2$	$C_{12}H_9FN_2O_2$
M _r	232.21	248.66	293.12	232.21
Crystal system, space group	Monoclinic, Pc	Monoclinic, Pc	Monoclinic, Pc	Monoclinic, Cc
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.1578(3), 3.7938(1),	12.9792(3), 3.8079(1),	13.2502(3), 3.8621(1),	26.1331(19), 3.7572(3),
	23.0837(6)	23.0781(6)	22.9979(8)	11.9066(7)
α, β, γ (°)	90, 95.103(2), 90	90, 95.036(2), 90	90, 94.861(2), 90	90, 115.765(8), 90
$V(Å^3)$	1060.50(5)	1136.20(5)	1172.65(6)	1052.85(14)
Ζ	4	4	4	4
μ (mm ⁻¹)	0.11	0.33	3.50	0.11
Crystal size (mm)	0.43×0.38×0.10	0.33×0.18×0.08	0.15×0.15×0.05	0.34×0.17×0.11
Data collection				
Absorption correction	Analytical (ABSFAC)	Analytical (ABSFAC)	Analytical (ABSFAC)	Analytical (ABSFAC)
T_{\min}, T_{\max}	0.959, 0.989	0.921, 0.975	0.577, 0.849	0.970, 0.991
Measured, independent, observed refl	6916, 3554, 3158 { <i>I</i> >2σ(<i>I</i>)}	7270, 4260, 3727 { <i>I</i> >2σ(<i>I</i>)}	7123, 3624, 2408 { <i>I</i> >2σ(<i>I</i>)}	3146, 1683, 1344 { <i>I</i> >2σ(<i>I</i>)}
R _{int}	0.023	0.035	0.059	0.034
$\theta_{\max}(^{\circ})$	27.5	27.5	27.2	27.1
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.650	0.649	0.642	0.642
Refinement			·	•
$R[F^2>2\sigma(F^2)], wR(F^2), S$	0.043, 0.106, 1.07	0.047, 0.129, 1.11	0.050, 0.090, 1.03	0.053, 0.126, 1.07
No. of reflections	3554	4260	3624	1683
No. of parameters	315	315	315	158
No. of restraints	2	2	2	2
H-atom treatment	Mixed	Mixed	Mixed	Mixed
$\Delta_{\max}, \Delta_{\min}$ (e Å ⁻³)	0.18, -0.14	0.27, -0.23	0.27, -0.30	0.24, -0.17
Absolute structure	Flack x from 917 quotients	Flack x from 1310 quotients	Classical Flack method	Flack x from 357 quotients
	[(I+)-(I-)]/[(I+)+(I-)]	[(I+)-(I-)]/[(I+)+(I-)]		[(I+)-(I-)]/[(I+)+(I-)] (Parsons,
	(Parsons, Flack & Wagner,	(Parsons, Flack & Wagner,		Flack & Wagner, 2013).
	2013).	2013).		
Absolute structure parameter	0.2(10)	0.04(7)	0.019(14)	-4.7(10)

Crystal data_(crystal growth)	CmmCl_(CHCl ₃ :acetone:toluene)	CmmBr_(CHCl ₃ :CH ₃ CN)	CopF_(CHCl ₃ :acetone)	CopCl_(CHCl ₃ :acetone)	CopBr_(THF)
Chemical formula	$C_{12}H_9ClN_2O_2$	$C_{12}H_9BrN_2O_2$	C ₁₂ H ₉ FN ₂ O ₂	$C_{12}H_9CIN_2O_2$	C ₁₂ H ₉ BrN ₂ O ₂
M _r	248.66	293.12	232.21	248.66	293.12
Crystal system, space group	Monoclinic, Ia	Monoclinic, $P2_1$	Triclinic, P ⁻¹	Triclinic, P ⁻¹	Monoclinic, $P2_1/n$
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.0058(9),	3.8827(5),	3.8471(4),	3.8776(9),	11.349(6),
	3.7726(6),	24.756(2),	11.6218(19),	11.481(4),	3.9443(16),
	24.477(3)	17.742(2)	12.467(2)	13.085(5)	26.137(8)
α, β, γ (°)	90, 93.046(11), 90	90, 91.789(14), 90	108.261(15),	105.84(3),	90, 101.34(5), 90
			90.417(11),	90.64(2),	
			95.461(11)	92.82(2)	
$V(Å^3)$	1107.1(2)	1704.5(3)	526.52(14)	559.5(3)	1147.2(9)
Ζ	4	6	2	2	4
μ (mm ⁻¹)	0.34	3.61	0.11	0.33	4.83
Crystal size (mm)	0.25×0.16×0.06	0.30×0.11×0.09	0.73×0.06×0.03	0.53×0.05×0.03	0.52×0.07×0.01
Data collection					
Absorption correction	Multi-scan (Empirical)	Multi-scan (Empirical)	Analytical	Multi-scan	Multi-scan
			(ABSFAC)	(Empirical)	(Empirical)
T_{\min}, T_{\max}	0.37, 1.00	0.79, 1.00	0.964, 0.996	0.585, 1.000	0.487, 1.000
Measured, independent, observed	3732, 2059, 1100	10527, 5993, 1546	5561, 1965, 1260	4234, 1972, 930	4128, 1718, 1169
refl $\{I \ge 2\sigma(I)\}$					
R _{int}	0.046	0.105	0.043	0.082	0.053
$\theta_{\rm max}(^{\circ})$	27.8	27.9	26.5	25.2	61.2
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.656	0.659	0.627	0.599	0.568
Refinement		•		•	•
$R[F^2>2\sigma(F^2)], wR(F^2), S$	0.081, 0.233, 1.05	0.052, 0.096, 0.63	0.046, 0.114, 1.02	0.079, 0.224, 1.00	0.070, 0.215, 1.03
No. of reflections	2059	5993	1965	1972	1718
No. of parameters	154	460	158	158	158
No. of restraints	2	39	0	0	0
H-atom treatment	Constrained	Constrained	Mixed	Mixed	Mixed
$\Delta_{\max}, \Delta_{\min} (e \text{ Å}^{-3})$	0.48, -0.27	0.63, -0.65	0.15, -0.14	0.31, -0.26	0.87, -0.39
Absolute structure	Flack x from 311 quotients [(I+)-	Classical Flack	-		_
	(I-)]/[(I+)+(I-)]	method.			
Absolute structure parameter	0.07 (10)	-0.008 (18)	_	_	İ–

Computer programs: CrysAlis PRO, Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET) (compiled Jan 20 2011, 15:58:25), CrysAlis PRO 1.171.38.41 (Rigaku OD, 2015), SHELXS14/7 (Sheldrick, 2014), SHELXS014/7 (Sheldrick, 2014), SHELXL97, SHELXL14/7 (Sheldrick, 2008) & SORTX (McArdle, 1995), SHELXL014/7 (Sheldrick, 2014), PLATON (Spek, 2009), SHELXL14/7. Absorption correction ABSFAC, Clark and Reid, 1998); Multi-scan (Empirical SCALE3 ABSPACK) H atom treatment: H atoms treated by a mixture of independent and constrained refinement. Flack x determined using ??? quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack & Wagner, Acta Cryst. B69 (2013) 249-259).

D —H···A	<i>D</i> —H (in Å)	H…A (in Å)	D ···A (in Å)	D—H···A (in °)
CmpF				
N1A—H1A…N23B	0.80(3)	2.20(3)	2.999(4)	174(3)
N1B—H1B···N23A ⁱ	0.79(4)	2.16(4)	2.941(4)	179(4)
C16A—H16A…O1B ⁱⁱ	0.93	2.30	3.201(4)	164
C16B—H16B…O1A ⁱⁱⁱ	0.93	2.43	3.313(4)	160
C22A—H22A…O1A	0.93	2.26	2.867(4)	122
C22B—H22B…O1B	0.93	2.55	2.933(4)	105
CmpCl				
N1A—H1A…N23B	0.82(4)	2.16(4)	2.980(5)	176(4)
N1B—H1B····N23A ⁱ	0.80(4)	2.13(4)	2.929(5)	173(4)
C16A—H16A…O1B ⁱⁱ	0.93	2.29	3.193(5)	163
C16B—H16B…O1A ⁱⁱⁱ	0.93	2.42	3.299(5)	157
C22A—H22A…O1A	0.93	2.28	2.879(5)	122
C22B—H22B…O1B	0.93	2.54	2.929(5)	106
CmpBr	•		•	
N1A—H1A…N23B	0.84(8)	2.17(9)	2.985(9)	164(8)
N1B—H1B···N23A ⁱ	0.89(7)	2.04(7)	2.927(9)	171(6)
C16A—H16A…O1B ⁱⁱ	0.93	2.30	3.199(9)	163
C16B—H16B…O1A ⁱⁱⁱ	0.93	2.42	3.296(10)	157
C22A—H22A…O1A	0.93	2.27	2.881(9)	122
C22B—H22B…O1B	0.93	2.55	2.934(9)	105
C22B—H22B···O2A	0.93	2.60	3.312(8)	133
CmmF				
N1—H1…N23 ^{iv}	0.86(7)	2.10(7)	2.950(5)	173(5)
C16—H16…O1 ⁱ	0.93	2.38	3.254(5)	157
C22—H22…O1	0.93	2.47	2.920(6)	110

Table 2. Selected hydrogen-bond parameters (Å, °)

CmmCl				
N1—H1…N23 ^v	0.86	2.10	2.948(11)	167
C16—H16…O1vi	0.93	2.35	3.223(12)	155
C22—H22…O1	0.93	2.45	2.913(14)	111
CmmBr	•	•	• • • •	•
N1A—H1A…N23B	0.86	2.03	2.88(2)	172
C16A—H16A…O1B ^{vii}	0.93	2.41	3.27(2)	154
N1B—H1B…N23C	0.86	2.17	3.02(2)	170
C16B—H16B····O1C ^{vii}	0.93	2.28	3.18(2)	163
N1C—H1C…N23Aviii	0.86	2.08	2.94(2)	176
C22B—H22B…O1B	0.93	2.32	2.89(2)	119
CopF			• • •	
N1—H1···N22 ^{ix}	0.91(2)	2.08(3)	2.994(3)	175(2)
C23—H23···O2 ^{ix}	0.93	2.57	3.271(3)	133
C26—H26…O1	0.93	2.28	2.868(3)	121
CopCl				
N1—H1···N22 ^{ix}	0.86(5)	2.15(5)	3.001(7)	170(4)
C23—H23···O2 ^{ix}	0.93	2.57	3.267(8)	133
C26—H26…O1	0.93	2.29	2.872(7)	121
C13—H13…O1x	0.93	2.53	3.425(8)	163
CopBr			• • •	
N1—H1···N22 ^{xi}	0.86(8)	2.14(8)	2.975(8)	163(7)
C15—H15…O1 ^{xii}	0.93	2.40	3.307(9)	165
C23—H23…O2 ^{xi}	0.93	2.58	3.290(9)	134
C26—H26…O1	0.93	2.26	2.850(9)	121

Symmetry code(s): (*i*) *x*, -*y*+1, *z*-1/2; (*ii*) *x*, *y*-1, *z*; (*iii*) *x*, -*y*+2, *z*-1/2; (*iv*) *x*, -*y*, *z*-1/2; (*v*) *x*+1/2, -*y*+2, *z*; (*vi*) *x*+1/2, -*y*+3, *z*; (*vii*) *x*+1, *y*, *z*; (*viii*) *x*-1, *y*, *z*-1; (*ix*) - *x*+2, -*y*+1, -*z*; (*x*) -*x*+2, -*y*+1, -*z*+1; (*xi*) -*x*+1, -*y*, -*z*+1; (*xii*) -*x*+1/2, -*y*+1/2.

3. Ab initio calculations

Pages 114-122

CxxF	Optimisation results; PES scans of C-rings and F-rings; PES scans of carbamate backbone
CxxCl	Optimisation results; PES scans of C-rings and Cl-rings; PES scans of carbamate backbone
CxxBr	Optimisation results; PES scans of C-rings and Br-rings ; PES scans of carbamate backbone

3.1. CxxF isomer grid

CxxF	$\alpha/^{\circ}$	$\beta/^{\circ}$	$\gamma/^{\circ}$	$\delta/^{\circ}$
СррF	-0.67	121.00	-0.24	0.21
CpmF	0.10	125.69	-0.80	-0.62
СроF	-0.03	75.37	6.28	1.00
CmpF	-0.87	121.19	-0.25	-0.05
CmmF	-0.29	56.8	0.89	0.72
CmoF	-1.39	74.54	6.30	1.06
CopF	-0.32	121.65	-0.29	-0.16
ComF	-0.65	56.02	0.82	0.75
CooF	-0.98	74.20	5.56	0.82

3.1.1. CxxF Optimisation results

Details as in the main body of manuscript.

3.1.2. Conformational analysis results

3.1.2.2. Potential energy surface (PES) scans of carbamate backbone dihedral angles in nine CxxF conformers (rotamers)

3.2. CxxCl isomer grid

CxxCl	α/°	$\beta^{/\circ}$	$\gamma/^{o}$	$\delta/^{\circ}$
CppCl	-0.76	125.79	-0.85	0.13
CpmCl	-0.38	126.03	-0.82	-0.28
CpoCl	-0.16	90.71	4.96	0.67
CmpCl	-1.09	125.97	-0.88	-0.13
CmmCl	-0.52	126.82	-0.90	-0.32
CmoCl	-0.97	90.59	5.06	0.69
CopCl	-0.35	126.63	-0.88	-0.29
ComCl	0.18	127.09	-0.94	-0.58
CooCl	-0.48	90.41	4.32	0.50

3.2.1. CxxCl Optimisation results

Details as in the main body of manuscript.

3.2.2. Conformational analysis results

3.2.2.2. Potential energy surface (PES) scans of carbamate backbone dihedral angles in nine CxxCl conformers (rotamers)

<u>3.3.</u> CxxBr isomer grid

CxxBr	$\alpha/^{\circ}$	$\beta^{\prime \circ}$	$\gamma/^{o}$	$\delta/^{\circ}$
CppBr	-0.75	127.07	-0.92	0.23
CpmBr	-0.43	125.3	-0.75	-0.35
CpoBr	0.38	111.04	2.70	0.15
CmpBr	-1.15	127.34	-1.03	0.00
CmmBr	0.99	57.98	0.89	0.47
CmoBr	-0.29	111.38	2.58	-0.06
CopBr	-0.38	127.93	-0.99	-0.20
ComBr	-0.15	57.06	0.80	0.63
CooBr	0.12	110.21	1.82	-0.30

3.3.1. CxxBr Optimisation results

Details as in the main body of manuscript.

3.3.2. Conformational analysis results

3.3.2.1. Potential energy surface (PES) scans of C-rings and Br-rings in nine CxxBr conformers (rotamers)

3.3.2.2. Potential energy surface (PES) scans of carbamate backbone dihedral angles in nine CxxBr conformers (rotamers)

SECTION 4:

Isomer	Space group	<i>Z'</i>	Hydrogen bonding in	Conformation (solid-state)	Conformation (gas phase)	Match	Amide H shift
			solid state				/ppm ^a
CppF	-	-	-	-	-	-	7.30
CpmF	-	-	-	-	F- <i>anti</i>	-	8.10
CpoF	-	-	-	-	-	-	7.71
CmpF	Pc	2	N-H···N	C-anti	C-syn	×	7.82
CmmF	Сс	1	N-H···N	C-anti/F-anti	C-syn/F-anti	×	8.10
CmoF	-	-	-	-	C-syn	-	8.26
CopF	P1	1	$(N-H\cdots N)_2^*$	C-syn	C-syn	\checkmark	9.47
CppCl	-	-	-	-	-	-	7.98
CpmCl	$P2_1$	1	N-H…N	Cl-anti	Cl-syn	×	7.14
CpoCl	-	-	-	-	-	-	8.04
CmpCl	Pc	2	N-H…N	C-anti	C-syn	×	7.49
CmmCl	Сс	1	N-H…N	C-anti/Cl-anti	C-syn/Cl-syn	×	7.70
CmoCl	-	-	-	-	C-syn	-	8.40
CopCl	PI	1	$(N-H\cdots N)_2$	C-syn	C-syn	\checkmark	9.43
ComCl	-	-	-	-	C-syn/Cl-syn	-	9.58
CooCl	-	-	-	-	C-svn	-	10.5
CppBr	-	-	-	-	-	-	7.09
CpmBr	-	-	-	-	Br-syn	-	7.27
CpoBr	-	-	-	-	-	-	8.22
CmpBr	Pc	2	N-H…N	C-anti	C-syn	×	7.83
CmmBr	$P2_{I}$	3	N-H···N	C-anti/Br-anti	C-syn/Br-syn	×	8.08
CmoBr*	$P2_1/c$	1	(N-H…O-H) ₂	C-syn	C-syn	\checkmark	8.06
CopBr	$P2_1/n$	1	(N-H···N) ₂	C-syn	C-syn	\checkmark	9.36
ComBr	-	-	-	-	C-syn/Br-syn	-	10.0

Table 3: Summary of the **CxxX** isomer grids with selected structural features

^{*a*} in CDCl₃, * monohydrate

SECTION 5: Examples of Crystal growth for the CopX triad.

The three **CopX** crystal samples serve as examples of needle-like and filamentous growth in the **CxxX** series.

The three **CopX** are representative of the crystal growth characteristics of the **CxxX** series of compounds and crystallise as needles that diffract. At least half of the **CxxX** crystal samples (as grown from a variety of solvent conditions) crystallise as very thin fibres or 'whiskers' that bend very easily and don't diffract on a conventional inhouse X-ray diffractometer.

			-				
Melting Point	CxxF	рF	mF	oF	Averages		Analysis and trends
Analysis	Ср	184	162	168	171.3		
of CxxX	Cm	166	152	135	151		
	Co	179	/	/	179		
		176.3	157	151.5			
	CxxCl	pCl	mCl	oCl			
	Ср	198	195	169	187.3		
	Cm	174	170	124	156		
	Co	199	174	145	172.7		
		190.3	179.7	146			
	CxxBr	pBr	mBr	oBr			
	Ср	206	193	168	189		
	Cm	169	154	87	136.7		
	Со	195	175	/	185		
		190	174	127.5			
		X = F	CI	Br	Averages		
	СрхХ	171.3	187.3	189	182.5	Ср	<u>CpxX > CoxX > CmxX</u>
	CmxX	151	156	136.7	147.9	Cm	For para-/meta/ortho- N-pyridine rings
	CoxX	179	172.7	185	178.9	Со	182.5 > 179 > 148°C
		X = F	CI	Br	Averages		
	СхрХ	176.3	190.3	190	185.5	рΧ	<u>CxpX > CxmX > CxoX</u>
	CxmX	157	179.7	174	170.2	mΧ	For para-/meta-/ortho- X-halogenated rings
	СхоХ	151.5	146	127.5	141.7	οХ	185.5 > 170 > 142°C

SECTION 6: MELTING POINT ANALYSIS OF CXXX