Supporting information

Determining the Kinetics of Desolvation of a TNT/Aniline Solvate

Yong Joon Lee[†], Nadia Sultana[†], and Brandon L. Weeks[†]

⁺ Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA

Corresponding Author:

Brandon L. Weeks,

Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA

Email: <u>brandon.weeks@ttu.edu</u>

Table of Contents

- Table S1. Crystal data and structure of TNT and TNT/aniline solvates
- Table S2. Mean Statistical parameters calculated by model-fitting method
- Figure S1. The trace of PXRD patterns at a) RT b) 45°C c) 60°C d) 65°C e) 70°C.
- Figure S2. AFM measurement of growth of new crystalline phase at a) 26 °C and b) 45 °C.

	Monoclinic TNT ¹	Orthorhombic TNT ¹	TNT/aniline ²		
Formula weight	227.14	227.14	320.27		
Crystal system	monoclinic	orthorhombic orthorhombic			
Space group	$P2_1/a$	$Pca2_1$	Pnma		
a/Å	14.9113(1)	14.910(2)	18.726(2)		
b/Å	6.0340(1)	6.034(2)	10.9375(13)		
c/Å	20.8815(3)	19.680(4)	6.7023(8)		
α, β, γ /°	$\alpha = \gamma = 90^{\circ},$ $\beta = 110.365(1)$	$\alpha = \beta = \gamma = 90^{\circ}$	$\alpha = \beta = \gamma = 90^{\circ}$		
$V/Å^3$	1761.37(4)	1770.6(7)	1372.3(3)		
Ζ	8	8	4		
$\rho/g \text{ cm}^{-3}$	1.654	1.654	1.550		

Table S1. Crystal data and structure of TNT and TNT/aniline solvates

1. R. M. Vrcelj, J. N. Sherwood, A. R. Kennedy, H. G. Gallagher and T. Gelbrich, *Cryst. Growth Des.*, 2003, *3*, 1027–1032.

2. CCDC 1919306. CCDC 1919306 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

		Integral form of rate equation	26 °C		35 °C		45 °C		60 °C	
		$g(\alpha) = kt$	S_{K}	R_K^2	S_{K}	R_K^2	S_{K}	R_K^2	S_{K}	R_K^2
Geometrical contraction models	Contracting cylindrical (R2)	$1 - (1 - \alpha)^{\frac{1}{2}} = kt$	5.80 × 10 ⁻⁹	0.9998	3.59 × 10 ⁻⁸ .	0.9978	2.00 × 10 ⁻⁸	0.9999	1.59 × 10-7	0.9998
	Contracting spherical (R3)	$1-(1-\alpha)^{\frac{1}{3}}=kt$	1.73 × 10 ⁻⁸	0.9980	5.22 × 10 ⁻⁸	0.9921	4.72 × 10 ⁻⁸	0.9986	4.10 × 10 ⁻⁷	0.9990
Diffusion models	1-D diffusion (D1)	$\alpha^2 = kt$	5.55 × 10 ⁻⁸	0.9856	1.27 × 10 ⁻⁷	0.9781	1.90 × 10 ⁻⁷	0.9899	1.17 × 10 ⁻⁶	0.9938
	2-D diffusion (D2)	$[(1-\alpha)\ln(1-\alpha)] + a = kt$	7.24 × 10 ⁻⁸	0.9607	1.62 × 10 ⁻⁷	0.9417	2.64 × 10 ⁻⁷	0.9684	1.75 × 10-6	0.9779
	3-D diffusion- Jander (D3)	$\left(1-(1-\alpha)^{\frac{1}{3}}\right)^2 = kt$	4.89 × 10 ⁻⁸	0.8970	1.04 × 10 ⁻⁷	0.8589	1.83 × 10 ⁻⁷	0.9102	1.33 × 10 ⁻⁶	0.9269
	Ginstling- Brounshtein (D4)	$1-\frac{2}{3}\alpha-(1-\alpha)^{\frac{2}{3}}=kt$	2.37 × 10 ⁻⁸	0.9431	5.20 × 10 ⁻⁸	0.9179	8.74 × 10 ⁻⁸	0.9526	6.02 × 10 ⁻⁷	0.9647
Reaction- order models	First-order (F1)	$-ln(1-\alpha) = kt$	2.02 × 10 ⁻⁷	0.9757	4.67 × 10 ⁻⁷	0.9620	7.08 × 10 ⁻⁷	0.9817	474 × 10 ⁻⁶	0.9935
	Second-order (F2)	$[1(1-\alpha)] - 1 = kt$	2.63 × 10 ⁻⁶	0.7531	5.23 × 10-6	0.7011	9.74 × 10-6	0.7735	7.84 × 10 ⁻⁵	0.7885
	Third-order (F3)	$\frac{1}{2}[(1-\alpha)]^{-2} - 1 = kt$	2.95 × 10 ⁻⁵	0.4845	5.53 × 10 ⁻⁵	0.4307	1.07 × 10 ⁻⁴	0.4943	9.30 × 10 ⁻⁴	0.5121

Table S2. Mean Statistical parameters calculated by model-fitting method

Figure S1. The changes of PXRD Patterns with time at a) RT; b) 45 °C; c) 60 °C; d) 65 °C; e) 70 °C. Simulated PXRD patterns for two polymorphic forms of TNT (monoclinic and orthorhombic) and TNT aniline are also displayed together.

Figure S2. AFM measurement of growth of new crystalline phase at a) 26 °C and b) 45 °C.