< Electronic Supplementary Information>

In-Situ Formed [M(CN)₉] (M = W, Mo) as Building Block for the Construction of Two Nona-Cyanometalate-Bridged Heterometallic Coordination Polymers

Jun Qian,^{a,b} Hirofumi Yoshikawa,^c Mark G. Humphrey,^{a,d} Jinfang Zhang,^a Kunio Awaga,^c Chi Zhang^{*,a,b}

^a China-Australia Joint Research Center for Functional Molecular Materials, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

^b China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China

^c Research Center for Materials Science, Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

^d Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia

Corresponding Author

*Prof. Dr. Chi Zhang: E-mail: chizhang@ujs.edu.cn; Fax: +86-511-88797815.

Supplementary Index

1. Topological analysis of compounds 1 and 2	S3
2. IR spectrum of CP-1	
3. IR spectrum of CP-2	
4. Powder XRD of CP-1	S6
5. Powder XRD of CP-1	S7
6. Connecting modes of molecular building blocks [M(CN)9]	S8
7. Packing structure of 1 and 2 viewed along the <i>b</i> axis	
8. TG curve of compound 1	S10
9. TG curve of compound 2	S11

1. Topological analysis

The topological structures of compounds **1** and **2** were both analyzed by programs OLEX^{S1} and TOPOS^{S2} with the CIF files. The topological cell of OLEX shows that the short (Schläfli) symbol of the net for **mot** is $\{6^6\}\{6^4\cdot 8^2\}_2$, which is consistent with the result of TOPOS.

References:

- S1. O. V. Dolomanov, A. J. Blake, N. R. Champness, M. Schröder, J. Appl. Cryst. 2003, 36, 1283–1284.
- S2. C. Bonneau, O. Delgado-Friederichs, M. O'Keeffe, O. M. Yaghi, Acta Cryst. A 2004, 60, 517–520.

Fig. S1 IR spectrum of CP-1.

Fig. S3 The experimental powder X-ray diffraction pattern (wavelength $\lambda = 1.5406$ Å) of CP-1. The simulated diffraction pattern generated from the single-crystal X-ray diffraction data is given for comparison.

Fig. S4 The experimental powder X-ray diffraction pattern (wavelength $\lambda = 1.5406$ Å) of CP-2. The simulated diffraction pattern generated from the single-crystal X-ray diffraction data is given for comparison.

Fig. S5 The connection mode of building blocks $[M(CN)_9]^{4-}$ (M = W, Mo) (W, Mo, green; Mn, cyan; C, gray; N, blue; O, red). All the hydrogen atoms are omitted for clarity.

Fig. S6 Packing structure of CPs **1** and **2** viewed along the *b* axis (W, Mo, green; Mn, cyan; C, gray; N, blue; O, red). Carbon and nitrogen atoms in DMF molecules as well as all the hydrogen atoms are omitted for clarity.

Figu. S7 TG curve of CP **1**. The TG curve shows that CP **1** releases a solvent DMF molecule and four coordinated DMF molecules per formula unit below 250 °C.

Fig. S8 TG curve of CP **2**. The TG curve shows that CP **2** releases a solvent DMF molecule and four coordinated DMF molecules per formula unit below 250 °C.