Supplementary Information (ESI) for the paper

Deciphering preferred solid-state conformations in nitrogen-containing bisphosphonates and their coordination compounds. A case study of discrete Cu(II) complexes based on C_{α} -substituted analogues of zoledronic acid: crystal structures and solid state characterization

Tomasz Rojek,^a Waldemar Goldeman,^a Katarzyna Ślepokura^b, Wiktor Zierkiewicz^a and Ewa Matczak-Jon^{*a}

^aDepartment of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland. E-mail: ewa.matczak-jon@pwr.edu.pl

^bFaculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.

Lp.	Database refcode	Formula ^a			Space group	Dimensionality	Ligand confor I	l mation ^b II	Source
Liga	ands								
1.	SOPSEV	H ₃ N	РО ₃ Н — ОН РО ₃ Н ₂	H₄Pam	<i>P</i> 2 ₁	-	~	×	L. M. Shkol'nikova <i>et al.</i> , Kristallografiya, 35 (1990) 1442
2	GOWZEX	H ₃ N	PO₃H [⊖]	H ₄ Ale	<i>P</i> 2 ₁ / <i>n</i>	-	✓	x	J. Ohanessian et al., Phosphorus, Sulfur Silicon Relat. Elem., 129 (1997) 99-110
2.	KOJGUL		—ОН РО ₃ Н ₂	H ₄ Ale·H ₂ O	<i>P</i> 2 ₁ / <i>n</i>	-	✓	x	Y. Leroux et al., Phosphorus, Sulfur Silicon Relat. Elem., 63 (1991) 181- 191
3.	VUYTUE	NH ₃	$ \begin{array}{c} $	H ₄ Ner	<i>P</i> 2 ₁ / <i>c</i>	-	~	×	V. M. Coiro <i>et al.</i> , <i>Acta Cryst.</i> , C 45 (1989) 446-448
	MEYGII	H	Θ	H ₄ Zol	P1	-	✓	×	V. V. Chernyshev <i>et al.</i> , <i>ActaCryst.</i> , C 69 (2013) 263-266
4.	BEKBOJ		ОН	H ₄ Zol·H ₂ O	P1	-	✓	×	J. M. Sanders <i>et al.</i> , <i>J. Med. Chem.</i> , 46 (2003) 5171-5183
	ORUZEH	- ~	PO ₃ H ₂	H ₄ Zol·3H ₂ O	P1	-	✓	×	R. Ruscica et al., J. Pharm. Sci., 99 (2010) 4962-4972
5.	MOFVOS	H N	PO ₃ H ^O OH PO ₃ H ₂	H ₄ Ris·H ₂ O	<i>P</i> 2 ₁ / <i>n</i>	_	~	×	C. Barbey et al., Z. Kristallogr New Cryst. Struct., 217 (2002) 137-138

Table S1. The list of crystal structures based on selected bisphosphonate ligands with the recognition of their conformation around C_{α} -C bond.

1. H	4Pam						
1.	FENREW	Na(H ₃ Pam)·5H ₂ O	ΡĪ	orginorg. salt	✓	×	K. Stahl <i>et al.</i> , <i>Acta Cryst.</i> , E 61 (2005) m132-m134
2.	EFAMIH	Na ₂ (H ₂ Pam)·5H ₂ O	ΡĪ	orginorg. salt	✓	sc	D. Vega <i>et al.</i> , <i>Acta Cryst.</i> , C 58 (2002) m77-m80
3.	IDAWIV	$[Co(H_3Pam)_2(H_2O)_2]$	$P2_{1}/c$	0D	✓	×	N. V. Tsaryk <i>et al.</i> , <i>Acta Cryst.</i> , E 67 (2011) m1694
4.	INIYUZ	$[Zn(H_3Pam)_2(H_2O)_2]$	$P2_{1}/n$	0D	✓	×	D. Fernandez <i>et al.</i> , <i>Acta Cryst.</i> , C 60 (2004) m73-m75
5.	FAZVUZ	$[Ni(H_3Pam)_2(H_2O)_2]$	$P2_{1}/n$	0D	✓	×	B. Demoro <i>et al.</i> , <i>Dalton Trans.</i> , 41 (2012) 6468-6476
6.	XEHTOU	$[Ni_2(H_3Pam)_4(H_2O)_2] \cdot 2H_2O$	$P2_{1}/c$	0D	✓	\checkmark	Y. Gong et al., Inorg. Chem., 45 (2006) 4987-4995
7.	DILTID	[Cu(2,2'-bpy)(H ₃ Pam)(Cl)(H ₂ O)]·2H ₂ O	P1	0D	✓	×	K. D. Demadis <i>et al.</i> , <i>Cryst. Growth Des.</i> , 13 (2013) 4480-4489
8.	KEVVOX01	[Cu(H ₂ Pam)]·H ₂ O	$P2_{1}/c$	1D	✓	×	G. Li et al., J. Coord. Chem., 61 (2008) 540-549
9.	TAMMAX	[Ca(H ₂ Pam)(H ₂ O)]·H ₂ O	$Pna2_1$	1D	✓	×	D. Liu et al., Chem. Commun.,48 (2012) 2668-2670
10.	XEHTAG	[Mn(H ₂ Pam)]·H ₂ O	P1	1D	✓	×	Y. Gong et al., Inorg. Chem., 45 (2006) 4987-4995
11.	XEHTEK	[Co(H ₂ Pam)]·H ₂ O	P1	1D	✓	×	Y. Gong <i>et al.</i> , <i>Inorg. Chem.</i> , 45 (2006) 4987-4995
12.	BACMUP ^c	$[Zn(H_3Pam)_2]$	C2/c	2D	✓	×	H. A. Habib <i>et al.</i> , <i>Polyhedron</i> , 29 (2010) 2537-2545
13.	XEHTUA	$[Zn(H_2Pam)]\cdot H_2O$	$P2_{1}/c$	2D	×	✓	Y. Gong <i>et al.</i> , <i>Inorg. Chem.</i> , 45 (2006) 4987-4995
14.	XEHTIO	$[Cu_3(HPam)_2(H_2O)_2]$	$P2_{1}/n$	3D	✓	×	Y. Gong <i>et al.</i> , <i>Inorg. Chem.</i> , 45 (2006) 4987-4995
15.	XOTRIJ	[Eu(HPam)]	Pnma	3D	×	✓	R. Fu et al., Cryst. Growth Des., 14 (2014) 6197-6204

16.	XOTROP	[Tb(HPam)]	Pnma	3D	x	✓	R. Fu et al., Cryst. Growth Des., 14 (2014) 6197-6204
17.	XOTRUV	[Sm(HPam)]	Pnma	3D	x	✓	R. Fu et al., Cryst. Growth Des., 14 (2014) 6197-6204
18.	XOTSAC	[Nd(HPam)]	$P2_{1}/c$	3D	sc	✓	R. Fu et al., Cryst. Growth Des., 14 (2014) 6197-6204
2. H	4Ale						
1.	EJEZUP	$Li[(H_3Ale)(H_2O)_2]$	$P2_{1}/c$	orginorg. salt	x	✓	G. B. Deacon <i>et al.</i> , <i>J. Coord. Chem.</i> , 64 (2011) 179-185
2.	TEHWOS	Na(H ₃ Ale)·3H ₂ O	$P2_{1}/n$	orginorg. salt	✓	×	D. Vega et al., Acta Cryst., C52 (1996) 2198-2201
3.	PUQHAM	$Na_2[(H_2Ale)(H_2O)_4] \cdot H_2O$	$P2_{1}/c$	orginorg. salt	✓	sc	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth Des.</i> , 15 (2015) 4646-4662
4.	PUQFOY	$2[K(H_3Ale)]\cdot 3H_2O$	$P2_{1}/c$	orginorg. salt	✓	z	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth</i> <i>Des.</i> , 15 (2015) 4646-4662
5.	PUQHEQ	$K_2[(H_2Ale)(H_2O)_6]$	<i>P</i> 1	orginorg. salt	✓	3L	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth</i> <i>Des.</i> , 15 (2015) 4646-4662
6.	PUQFUE	$K_2[(H_3Ale)_2(H_2O)_2]\cdot 2H_2O$	C2/c	orginorg. salt	✓	3L	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth</i> <i>Des.</i> , 15 (2015) 4646-4662
7.	PUQGAL01	$Rb[(H_3Ale)(H_2O)] \cdot H_2O$	$P2_{1}/c$	orginorg. salt	✓	x	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth</i> <i>Des.</i> , 15 (2015) 4646-4662
8.	PUQGOZ	$Rb[(H_3Ale)(H_4Ale)]\cdot 2H_2O$	$P2_{1}/c$	orginorg. salt	✓	z	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth</i> <i>Des.</i> , 15 (2015) 4646-4662
9.	PUQGAL	$Rb_2[(H_3Ale)_2(H_2O)_2]\cdot 2H_2O$	C2/c	orginorg. salt	✓	x	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth Des.</i> , 15 (2015) 4646-4662
10.	PUQHIU	$Rb_2[(H_2Ale)(H_2O)_5] \cdot H_2O$	$P2_{1}/n$	orginorg. salt	✓	z	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth Des.</i> , 15 (2015) 4646-4662
11.	PUQHOA	$Rb_4[(H_2Ale)_2(H_2O)_8]\cdot H_2O$	P1	orginorg. salt	✓	x	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth</i> <i>Des.</i> , 15 (2015) 4646-4662
12.	PUQGIT	$Cs[(H_3Ale)(H_2O)] \cdot H_2O$	$P2_{1}/c$	orginorg. salt	✓	x	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth</i> <i>Des.</i> , 15 (2015) 4646-4662

13.	PUQGUF	$Cs[(H_3Ale)(H_4Ale)] \cdot 2H_2O$	ΡĪ	orginorg. salt	✓	×	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth</i> Des. 15 (2015) 4646-4662
14.	PUQJAO	$Cs_2[(H_2Ale)(H_2O)_4]$	PĪ	orginorg. salt	✓	x	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth</i> <i>Des.</i> , 15 (2015) 4646-4662
15.	PUQHUG	$Cs_4[(H_2Ale)_2(H_2O)_9]\cdot 2H_2O$	ΡĪ	orginorg. salt	✓	x	G. B. Deacon <i>et al.</i> , <i>Cryst. Growth</i> <i>Des.</i> , 15 (2015) 4646-4662
16.	VEFBEQ	$(H_2 en)(H_2 Ale) \cdot 2H_2O$	Pbca	orgorg. salt	✓	x	G. B. Deacon <i>et al.</i> , <i>CrystEngComm</i> , 19 (2017) 5611-5621
17.	VEFBIU	$(H_2 meen)(H_2 Ale) \cdot 3H_2O$	$P2_{1}/c$	orgorg. salt	✓	×	G. B. Deacon <i>et al.</i> , <i>CrystEngComm</i> , 19 (2017) 5611-5621
18.	VEFBOA	$(H_2me_2en)(H_2Ale)\cdot 3.5H_2O$	$P2_{1}/n$	orgorg. salt	✓	×	G. B. Deacon <i>et al.</i> , <i>CrystEngComm</i> , 19 (2017) 5611-5621
19.	VEFBUG	$(H_2et_2en)(H_2Ale)\cdot 2H_2O$	P2 ₁ 2 ₁ 2 ₁	orgorg. salt	✓	×	G. B. Deacon <i>et al.</i> , <i>CrystEngComm</i> , 19 (2017) 5611-5621
20.	VEFCAN	$(H_2 chda)(H_2 Ale) \cdot 3H_2O$	P1	orgorg. salt	✓	×	G. B. Deacon <i>et al.</i> , <i>CrystEngComm</i> , 19 (2017) 5611-5621
21.	VEFCER	$(H_2xda)(H_2Ale)\cdot 3H_2O$	$P2_{1}/c$	orgorg. salt	✓	×	G. B. Deacon <i>et al.</i> , <i>CrystEngComm</i> , 19 (2017) 5611-5621
22.	VEFCIV	(H ₂ oda)(H ₂ Ale)·2H ₂ O·0.5EtOH	<i>C</i> 2/ <i>c</i>	orgorg. salt	✓	×	G. B. Deacon <i>et al.</i> , <i>CrystEngComm</i> , 19 (2017) 5611-5621
23.	VEFCOB	(Hphea) ₂ (H ₂ Ale)·2H ₂ O	P1	orgorg. salt	✓	×	G. B. Deacon <i>et al.</i> , <i>CrystEngComm</i> , 19 (2017) 5611-5621
24.	VEFCUH	$(Hmel)_2(H_2Ale)\cdot 7H_2O$	$P2_{1}/c$	orgorg. salt	x	~	G. B. Deacon <i>et al.</i> , <i>CrystEngComm</i> , 19 (2017) 5611-5621
25.	DILTEZ	$[Cu(2,2'-bpy)(H_3Ale)(Cl)]\cdot 4H_2O$	<i>C</i> 2/ <i>c</i>	0D	✓	×	K. D. Demadis <i>et al.</i> , <i>Cryst. Growth Des.</i> , 13 (2013) 4480-4489
26.	ACOZUP	$[Ni_2(H_3Ale)_4(H_2O)_2] \cdot 2H_2O$	$P2_{1}/c$	0D	✓	~	M. Sikorska <i>et al.</i> , <i>Acta Cryst.</i> , E 68 (2012) m820-m821
27.	FAZVOT	$[Cu_2(H_3Ale)_4(H_2O)_2] \cdot 2H_2O$	$P2_{1}/c$	0D	✓	✓	B. Demoro <i>et al.</i> , <i>Dalton Trans.</i> , 41 (2012) 6468-6476
28.	ICUVOS	$[Co_2(H_3Ale)_4(H_2O)_2] \cdot 2H_2O$	$P2_{1}/c$	0D	✓	✓	S. P. Man <i>et al.</i> , <i>Polyhedron</i> , 25 (2006) 1017-1032

29.	GIKPEW	[Mn(H ₂ Ale)]·H ₂ O	$P2_{1}/c$	1D	✓	x	ZC. Zhang <i>et al.</i> , <i>Inorg. Chem.</i> <i>Commun.</i> , 10 (2007) 1063-1066
30.	LILQII	[Ca(H ₂ Ale)]·H ₂ O	P2 ₁ 2 ₁ 2 ₁	1D	✓	×	E. Alvarez <i>et al.</i> , <i>CrystEngComm</i> , 15 (2013) 9899-9905
3. H	4Ner						
1.	ICUTOQ	$[Co(H_3Ner)_2(H_2O)_2] \cdot 2H_2O$	$P2_{1}/c$	0D	✓	×	S. P. Man <i>et al.</i> , <i>Polyhedron</i> , 25 (2006) 1017-1032
2.	ICUTUW	$[Ni(H_3Ner)_2(H_2O)_2] \cdot 2H_2O$	$P2_{1}/c$	0D	✓	×	S. P. Man <i>et al.</i> , <i>Polyhedron</i> , 25 (2006) 1017-1032
3.	ICUVAE	$[Zn(H_3Ner)_2(H_2O)_2] \cdot 2H_2O$	$P2_{1}/c$	0D	✓	×	S. P. Man <i>et al.</i> , <i>Polyhedron</i> , 25 (2006) 1017-1032
4.	ICUVEI	$[Mn_2(H_3Ner)_4(H_2O)_2] \cdot 2H_2O$	$P2_{1}/n$	0D	✓	×	S. P. Man <i>et al.</i> , <i>Polyhedron</i> , 25 (2006) 1017-1032
5.	ICUVIM	$[Cd_2(H_3Ner)_4(H_2O)_2] \cdot 2H_2O$	$P2_{1}/n$	0D	✓	✓	S. P. Man <i>et al.</i> , <i>Polyhedron</i> , 25 (2006) 1017-1032
4. H	₄ Zol						
1.	KUQYIF	Na ₃ [(H ₃ Zol) ₂ (H _{3.5} Zol) ₂ (H ₂ O) ₄]·2H ₂ O	ΡĪ	orginorg. salt	✓	×	E. Freire <i>et al.</i> , <i>Acta Cryst.</i> , C 66 (2010) m122-m126
2.	DULFOG	$K[(H_3Zol)(H_2O)] \cdot H_2O$	ΡĪ	orginorg. salt	✓	×	E. Freire <i>et al.</i> , <i>Acta Cryst.</i> ,C 66 (2010) m13-m16
3.	JAPJOC	$(NH_4)_2(H_2Zol)\cdot 2H_2O$	<i>P</i> 1	orginorg. salt	✓	×	M. Sikorska <i>et al.</i> , <i>J. Crystallogr.</i> , 2013 (2013) 1-5
4.	ENODIV	(Hcyt)(H ₃ Zol)·3H ₂ O	<i>P</i> 1	orgorg. salt	✓	×	B. Sridhar <i>et al.</i> , <i>Acta Cryst.</i> , C 67 (2011) 0115-0119
5.	SIXZUW	$(Hade)_2(H_2Zol)\cdot 4H_2O$	$P2_{1}/n$	orgorg. salt	✓	×	B. Sridhar <i>et al.</i> , <i>Acta Cryst.</i> , C 70 (2014) 67-74
6.	SIYBAF	$(Hade)_2(H_2Zol)\cdot 6H_2O$	P1	orgorg. salt	✓	×	B. Sridhar <i>et al.</i> , <i>Acta Cryst.</i> , C 70 (2014) 67-74
7.	YAGXEL	(Hdcha) ₃ (HZol)·H ₂ O·EtOH	<i>P</i> 1	orgorg. salt	✓	×	A. Sarkar <i>et al.</i> , <i>Acta Cryst.</i> , E 67 (2011) o2980
8.	TUVZAM	$[Mg(H_3Zol)_2(H_2O)_2]$	<i>P</i> 1	0D	✓	×	E. Freire <i>et al.</i> , <i>Acta Cryst.</i> , C 66 (2010) m166-m170

9.	VIMXOF	$[Co(H_3Zol)_2(H_2O)_2]$	ΡĪ	0D	✓	sc	DK. Cao et al., Inorg. Chem., 46 (2007) 7571-7578
10.	VIMXUL	$[Ni(H_3Zol)_2(H_2O)_2]$	ΡĪ	0D	✓	×	DK. Cao et al., Inorg. Chem., 46 (2007) 7571-7578
11.	RUPXAC	$[Mn(H_3Zol)_2(H_2O)_2]$	ΡĪ	0D	✓	×	ZC. Zhang <i>et al.</i> , <i>Acta Cryst.</i> , E 65 (2009) m1701-m1702
12.	PUFXUK	$[Zn(H_3Zol)_2(H_2O)_2]$	P1	0D	✓	×	E. Freire <i>et al.</i> , <i>Acta Cryst.</i> , E 65 (2009) m1428-m1429
13.	PUFYAR	$[Zn(H_3Zol)_2(H_2O)] \cdot 2H_2O$	C2/c	0D	✓	sc	E. Freire <i>et al.</i> , <i>Acta Cryst.</i> , E 65 (2009) m1430-m1431
14.	DOGYII	[Cu(H ₃ Zol) ₂]	P1	0D	✓	sc	DK. Cao et al., Dalton Trans., 0 (2008) 5008-5015
15.	DOGYEE	$[Cu(H_3Zol)_2(H_2O)]\cdot 2H_2O$	C2/c	0D	✓	sc	DK. Cao et al., Dalton Trans., 0 (2008) 5008-5015
16.	IMUTUH	[Cu(2,2'-bpy)(H ₃ Zol)(HSO ₄)]	P1	0D	✓	sc	QJ. Niu et al., J. Coord. Chem., 69 (2016) 1447-1462
17.	IMUVAP	[Cu ₂ (2,2'-bpy) ₂ (HZol)(H ₂ O)(Cl)]·4H ₂ O	P1	0D	✓	sc	QJ. Niu et al., J. Coord. Chem., 69 (2016) 1447-1462
18.	IMUVET	$[Cu_2(phen)_2(HZol)(H_2O)(Cl)]$ ·2.5H ₂ O	C2/c	0D	✓	sc	QJ. Niu et al., J. Coord. Chem., 69 (2016) 1447-1462
19.	IMUVIX	$[Cu_3(2,2'-bpy)_3(H_3Zol)(HZol)(SO_4)]\cdot 5H_2O$	P1	0D	✓	sc	QJ. Niu et al., J. Coord. Chem., 69 (2016) 1447-1462
20.	POXCOW	Na ₂ [Re(CO) ₃ (2,2'-bpy)(H ₃ Zol)]Cl ₃ ·8H ₂ O	P1	0D	✓	sc	A. Yazdani <i>et al.</i> , <i>Inorg. Chem.</i> , 54 (2015) 1728-1736
21.	FELZAZ	$Fe_{15}(HZol)_{10}(H_2Zol)_2(H_2O)_{24}$ (2/3Cl:1/3H_2O)_6·7Cl·65(H_2O)	P1	0D	✓	s	E. Freire <i>et al., Inorganica Chim.</i> <i>Acta</i> , 394 (2013) 229-236
22.	TAMMEB	$[Ca(H_2Zol)(H_2O)]$	$Pna2_1$	1D	✓	x	D. Liu et al., Chem. Commun., 48 (2012) 2668-2670
23.	GOZPUI	$[Cu_3(HZol)_2(H_2O)_6] \cdot 6H_2O$	<i>P</i> 1	1D	~	x	L. Qiu et al., Eur. J. Med. Chem., 89 (2015) 42-50
24.	OXAMUW	$[Mn(H_2Zol)]\cdot H_2O$	$P2_{1}/c$	1D	\checkmark	×	DK. Cao et al., Inorg. Chem., 50 (2011) 2278-2287

25.	VIRXAX	$(H_2ppz)[Zn_2(H_2Zol)_2(ox)]$	ΡĪ	1D	✓	z	XL. Zhang et al., Dalton Trans., 43 (2014) 285-289
26.	VIMXIZ	$[Ni_3(HZol)_2(H_2O)_4] \cdot 2H_2O$	ΡĪ	2D	✓	x	DK. Cao et al., Inorg. Chem., 46 (2007) 7571-7578
27.	VIMXEV	$[Co_3(HZol)_2(H_2O)_4] \cdot 2H_2O$	ΡĪ	2D	✓	x	DK. Cao et al., Inorg. Chem., 46 (2007) 7571-7578
28.	VIRXEB	$[Zn_3(HZol)_2(H_2O)_4]$	<i>C</i> 2/ <i>c</i>	2D	✓	x	XL. Zhang et al., Dalton Trans., 43 (2014) 285-289
29.	OXAMOQ	$[Co_3(HZol)_2(H_2O)_4]$	<i>C</i> 2/ <i>c</i>	2D	✓	×	DK. Cao <i>et al.</i> , <i>Inorg. Chem.</i> , 50 (2011) 2278-2287
30.	DOGYUU01	$[Cu_3(HZol)_2(H_2O)_2]$	P1	2D	✓	×	Y. Li, Acta Cryst., E66 (2010) m1576
31.	KUJGON	$(H_2en)[Co_3(H_2Zol)_2(ox)(H_2O)_2]$	P1	2D	✓	x	QJ. Niu et al., J. Solid State Chem., 227 (2015) 212-218
32.	OXAMIK	$[Co_3(HZol)_2(H_2O)_4] \cdot 2H_2O$	P1	3D	✓	x	DK. Cao et al., Inorg. Chem., 50 (2011) 2278-2287
33.	AKUKUO	[Ni ₃ (HZol) ₂ (bpe) ₂]·4H ₂ O	<i>P</i> 1	3D	✓	x	QJ. Niu et al., Transit. Met. Chem., 41 (2016) 365-373
34.	SUSMIE	[Ni ₃ (HZol) ₂ (4,4'-bpy)]·(4,4'-bpy)·4H ₂ O	ΡĪ	3D	✓	x	XQ. Wu et al., Inorg. Chem. Commun., 58 (2015) 60-63
35.	VIRXIF	$(H_2ppz)[Zn_3(Zol)_2]$	<i>P</i> 3 ₂ 21	3D	✓	x	XL. Zhang et al., Dalton Trans., 43 (2014) 285-289
36.	KUJGUT	$[Cd_4(HZol)_2(ox)(H_2O)_2]$	<i>C</i> 2/ <i>c</i>	3D	✓	x	QJ. Niu et al., J. Solid State Chem., 227 (2015) 212-218
5. H	4Ris						
1.	WURPOO	Na(H ₃ Ris)·2H ₂ O	ΡĪ	orginorg. salt	✓	x	W. L. Gossman <i>et al.</i> , <i>Acta Cryst.</i> , C 59 (2003) m33-m36
2.	WURPUU	Na(H ₃ Ris)·2.5H ₂ O	C2/c	orginorg. salt	✓	×	W. L. Gossman <i>et al.</i> , <i>Acta Cryst.</i> , C 59 (2003) m33-m36
3.	ORUWII	3[Na(H ₃ Ris)]·3AcOH	$P2_{1}/n$	orginorg. salt	✓	×	J. Bruning <i>et al.</i> , <i>J. Pharm. Sci.</i> , 100 (2011) 863-873

4.	YEFTOT	K(H ₃ Ris)·2H ₂ O	$P2_{1}/n$	orginorg. salt	✓	3C	K. Stahl <i>et al.</i> , <i>Acta Cryst.</i> , C 62 (2006) m112-m115
5.	YEFTIN	(NH ₄)(H ₃ Ris)·2H ₂ O	$P2_{1}/n$	orginorg. salt	✓	3C	K. Stahl <i>et al.</i> , <i>Acta Cryst.</i> , C 62 (2006) m112-m115
6.	LUVMUL	[Cu(H ₃ Ris) ₂]·4H ₂ O	ΡĪ	0D	✓	3C	S. Kunnas-Hiltunen <i>et al.</i> , <i>Z. Anorg.</i> <i>Allg. Chem.</i> , 636 (2010) 710-720
7.	LAKPOE	[Ni(H ₃ Ris) ₂ (H ₂ O) ₂]·2H ₂ O	P1	0D	✓	3C	B. Demoro <i>et al.</i> , <i>J. Inorg. Biochem.</i> , 104 (2010) 1252-1258
8.	DUPXOC	[Zn(H ₂ Ris)]	$P2_{1}/n$	1D	✓	x	X. Huang et al., Acta Cryst., E66 (2010) m59-m60
9.	POLNEK	$[Cd(H_2Ris)(H_2O)]$	P2 ₁ 2 ₁ 2 ₁	1D	✓	x	J. Hu et al., Inorg. Chem. Commun., 11 (2008) 1110-1112
10.	GAPSIC	[Cd(H ₂ Ris)]·H ₂ O	$P2_{1}/c$	1D	✓	3C	KR. Ma et al., J. Mol. Struct., 1139 (2017) 67-77
11.	HIRJUP	[Fe(H ₂ Ris)(H ₂ O)]	$P2_{1}/n$	1D	✓	3C	KR. Ma et al., Synth. Met., 182 (2013) 40-48
12.	MINKEA	$[Co(H_2Ris)(H_2O)]$	$P2_{1}/n$	1D	✓	3C	ZC. Zhang <i>et al.</i> , <i>Dalton Trans.</i> , 0 (2007) 4681-4684
13.	PUNZII	[Mn(H ₂ Ris)(H ₂ O)]	$P2_{1}/n$	1D	✓	×	J. Zhao <i>et al.</i> , <i>Inorg. Chim. Acta</i> , 363 (2010) 662-668
14.	YUDPAP	[Mn(H ₂ Ris)]·3H ₂ O	<i>P</i> 1	1D	✓	×	Y. Ma et al., Inorg. Chem. Commun., 12 (2009) 860-863
15.	GAPSUO	[Cu ₃ (H ₃ Ris) ₄]·2(OH)·2H ₂ O	<i>P</i> 1	1D	✓	×	KR. Ma et al., J. Mol. Struct., 1139 (2017) 67-77
16.	RUFFAB	(Hdma)[Zn ₂ (H ₂ Ris)(HRis)]·3H ₂ O	$P2_{1}/c$	1D	✓	×	T. Sun <i>et al.</i> , <i>RSC Adv.</i> , 5 (2015) 26410-26419
17.	HIRJOJ	$[Mg_3(HRis)_2(H_2O)_4] \cdot 2H_2O$	<i>P</i> 1	2D	✓	×	KR. Ma et al., Synth. Met., 182 (2013) 40-48
18.	GAPSOI	$[Cu_3(HRis)_2(H_2O)_2]$	$P2_{1}/c$	2D	✓	×	KR. Ma et al., J. Mol. Struct., 1139 (2017) 67-77
19.	HIYBAU	$[Ni_3(HRis)_2(H_2O)_4] \cdot H_2O$	P1	2D	×	✓	ZF. Guo et al., Transit. Met. Chem., 39 (2014) 353-360

20.	PUNZEE	[Ni ₃ (HRis) ₂ (H ₂ O) ₄]·2H ₂ O	ΡĪ	2D	✓	×	J. Zhao <i>et al., Inorg. Chim. Acta</i> , 363 (2010) 662-668
21.	HIRKAW	[Ni ₃ (HRis) ₂ (H ₂ O) ₄]·3H ₂ O	ΡĪ	2D	×	✓	KR. Ma et al., Synth. Met., 182 (2013) 40-48
22.	POLNIO	[Cd ₂ (HRis)(H ₂ O)(Cl)]	$P2_{1}/c$	2D	✓	×	J. Hu et al., Inorg. Chem. Commun., 11 (2008) 1110-1112
23.	HIXZUL	$[Cu^{I}Cu^{II}(HRis)] \cdot (H_2O) \cdot 0.5(en)$	P1	2D	✓	×	ZF. Guo et al., Transit. Met. Chem., 39 (2014) 353-360
24.	VEGWOV	$[Fe_3(H_2Ris)_2(H_2O)_2(ox)]$	PĪ	2D	✓	x	C. Li et al., CrystEngComm, 14 (2012) 5479-5486
25.	VEGWUB	$[Co_3(H_2Ris)_2(H_2O)_2(ox)]$	PĪ	2D	✓	x	C. Li et al., CrystEngComm, 14 (2012) 5479-5486
26.	VEGXAI	$[Zn_3(H_2Ris)_2(H_2O)_2(ox)]$	P1	2D	✓	x	C. Li et al., CrystEngComm, 14 (2012) 5479-5486
27.	VEGXEM	$[Cu_3(H_2Ris)_2(ox)]$	P1	2D	✓	x	C. Li et al., CrystEngComm, 14 (2012) 5479-5486
28.	TAPJUR	$[Zn_2(Ris)(H_2O)]$	$P2_{1}/n$	3D	✓	x	R. Fu et al., CrystEngComm,13 (2011) 2331-2335
29.	ТАРКАҮ	[Cu ₄ (Ris) ₂ (H ₂ O) ₄]·1.25H ₂ O	P1	3D	✓	x	R. Fu et al., CrystEngComm, 13 (2011) 2331-2335
30.	TIGSOT	(H ₂ dmtppz) _{0.5} [Zn ₃ (Ris)(HRis)]·3H ₂ O	$P2_{1}/c$	3D	✓	x	R. Fu et al., CrystEngComm, 13 (2011) 6334-6336
31.	RUFDUT	$(Hdma)_2[Ni_3(Ris)_2(H_2O)_2]\cdot 2H_2O$	Pbca	3D	✓	x	T. Sun <i>et al.</i> , <i>RSC Adv.</i> , 5 (2015) 26410-26419
32.	LICKAL	(H ₂ ampy) _{0.5} [Zn ₃ (Ris)(HRis)]·3H ₂ O	$P2_{1}/c$	3D	✓	x	R. Fu et al., CrystEngComm, 13 (2011) 6334-6336
6. H	44Py-Ris						
1.	OGATIB	$[Cu(H_34py-Ris)_2]$	$P2_{1}/c$	0D	✓	x	YS. Ma <i>et al.</i> , <i>RSC Adv.</i> , 3 (2013) 18430-18440
2.	ODEPAR	[Zn(H ₂ 4py-Ris)]·H ₂ O	$P2_{1}/c$	1D	~	x	WY. Yin <i>et al.</i> , <i>J. Mol. Eng. Mater.</i> , 2 (2014) 1440003

3.	ODEPEV	[Cd(H ₂ 4py-Ris)]·H ₂ O	$P2_{1}/c$	1D	✓	ગ	WY. Yin <i>et al.</i> , <i>J. Mol. Eng. Mater.</i> , 2 (2014) 1440003
4.	OGASOG	[Mn(H ₂ 4py-Ris)]·H ₂ O	$P2_{1}/c$	1D	✓	x	YS. Ma <i>et al.</i> , <i>RSC Adv.</i> , 3 (2013) 18430-18440
5.	OGATUN	[Co(H ₂ 4py-Ris)]·H ₂ O	$P2_{1}/c$	1D	✓	x	YS. Ma <i>et al.</i> , <i>RSC Adv.</i> , 3 (2013) 18430-18440
6.	OGATAT	[Cu(H ₂ 4py-Ris)]	P1	1D	✓	x	YS. Ma <i>et al.</i> , <i>RSC Adv.</i> , 3 (2013) 18430-18440
7.	OGATOH	[Co ₂ (H ₃ 4py-Ris) ₂ (ox)(H ₂ O) ₂]·2H ₂ O	P1	1D	✓	x	YS. Ma <i>et al.</i> , <i>RSC Adv.</i> , 3 (2013) 18430-18440
8.	OGASUM	$[Cu^{I}Cu^{II}_{3}(H_{0.5}4\text{-}pyRis)_{2}]$	P1	2D	✓	x	YS. Ma <i>et al.</i> , <i>RSC Adv.</i> , 3 (2013) 18430-18440
9.	OGATEX	$[Cu_3(H_24py-Ris)_2(ox)]$	ΡĪ	2D	✓	æ	YS. Ma <i>et al.</i> , <i>RSC Adv.</i> , 3 (2013) 18430-18440
10.	OGAVAV	[Co ₃ (H4py-Ris) ₂ (ox)(H ₂ O) ₂	ΡĪ	2D	✓	x	YS. Ma <i>et al.</i> , <i>RSC Adv.</i> , 3 (2013) 18430-18440
7. H	₄Min						
1.	ESAVAX ^d	$[Zn(H_3Min)_2(H_2O)_2]\cdot 3H_2O$	<i>C</i> 2/ <i>c</i>	0D	×	×	R. Fu et al., Cryst. Growth Des., 16 (2016) 5074–5083
2.	ESAVEB	$[Zn(H_2Min)(H_2O)_2] \cdot H_2O$	$P2_{1}/c$	0D	\checkmark	×	R. Fu et al., Cryst. Growth Des., 16 (2016) 5074–5083
3.	ESATUP	[Zn(H ₂ Min)]	$Pca2_1$	2D	✓	æ	R. Fu et al., Cryst. Growth Des., 16 (2016) 5074–5083
8. H	₄Tra						
1.	POVRIC	[Co(H ₂ Tra)]	ΡĪ	2D	~	x	DG. Ding et al., Cryst. Growth Des., 9 (2009) 508-516
2.	POVROI ^e	$[Ni_2(H_2Tra)_2]$ ·(en)	$P2_{1}/c$	2D	×	×	DG. Ding <i>et al.</i> , <i>Cryst. Growth Des.</i> , 9 (2009) 508-516
3.	POVRAU	$[Mn_2(Tra)(H_2O)_2]$	$P2_{1}/c$	3D	~	×	DG. Ding <i>et al.</i> , <i>Cryst. Growth Des.</i> , 9 (2009) 508-516
4.	POVREY	[Cu ₂ (Tra)(H ₂ O)]	P1	3D	✓	×	DG. Ding <i>et al.</i> , <i>Cryst. Growth Des.</i> , 9 (2009) 508-516

9. H₄Olp

no crystal structure based on H₄Olp was found in CSD

10. H₄Prp

no crystal structure based on H₄Prp was found in CSD

11. H₄Ppp

no crystal structure based on H₄Ppp was found in CSD

^aAbbreviations: H₄Pam – pamidronic acid, H₄Ale – alendronic acid, H₄Ner – neridronic acid, H₄Zol – zoledronic acid, H₄Ris – risedronic acid, H₄Aley-Ris – 1-hydroxy-2-(4-pyridyl)etylidene-1,1-diphosphonic acid, H₄Min – minodronic acid, H₄Tra – 1-hydroxy-2-(1*H*-1,2,4-triazol-1-yl)ethylidene-1,1-diphosphonic acid, H₄Op – olpadronic acid, H₄Prp – 1-hydroxy-3-(1-pyrrolidinyl)propylidene-1,1-diphosphonic acid, H₄Pp – 1-hydroxy-3-(1-piperidinyl)propylidene-1,1-diphosphonic acid, ade – adenine, cyt – cytosine, gua – guanidine, 2,2'-bpy – 2,2'-bipyridine, 4,4'-bpy – 4,4'-bipyridine, bpe – trans-4,4-vinylenedipyridine, phen – 1,10-phenanthroline, ampy – 4-(aminomethyl)pyridine, ppz – piperazine, dmtppz – 2,5-dimethylpiperazine, dma – dimethylamine, dcha – dicyclohexylamine, tba – tetrabutylammonium, en – ethylenediamine, meen – *N*-methylethylenediamine, me₂en – *N*,*N*'-dimethylethylenediamine, oda – 1,8-octanediamine, chda – cyclohexyl-1,2-diamine, xda – 1,3-benzenedimethanamine, phea – phenethylamine, mel – melamine, AcOH – aceticacid, H₂ox – oxalic acid, EtOH – ethanol. ^bConformation state was determined for the $\tau_1(R-C_\alpha-C-O)$ dihedral angle describing the position of hydroxyl O atom with respect to the R¹ group: I – synclinal (*sc*), II – antiperiplanar (*ap*). ^cOne of crystallographically nonequivalent ligands in synperiplanar (*sp*) conformation. ^dLigand moiety in synperiplanar (*sp*) conformation.

Lp.	Database refcode	±τ ₁ [°]	Lp.	Database refcode	±τ ₁ [°]	Lp.	Database refcode	±τ ₁ [°]	Lp.	Database refcode	±τ ₁ [°]
Liga	nds		11.	XEHTEK	52.57	12	DUOCHE	63.75	3.	ICUVAE cd	50.50
1.	SOPSEV	66.54	12	DACMUD	6.64	15.	FUQUUF	64.40	1	ICINEI	64.20
	GOWZEX	54.96	12.	DACIVIUT	69.22	14.	PUQJAO	66.05	4.	ICUVEI	46.14
2.	KOIGUI	69.86	13.	XEHTUA	179.17	15	PUOHUG	66.35	5	ICUVIM	65.58
	KOJUUL	65.99	14.	XEHTIO	67.19	15.	DOUDO	59.91	5.		168.22
3.	VUYTUE	52.26	15.	XOTRIJ	180.00	16.	VEFBEQ	53.54	4. H ₄ Zo	ol	
	MEYGII	72.57	16.	XOTROP	180.00	17.	VEFBIU	65.30	1	VUOVIE	51.34
1	DEVDOI	58.70	17.	XOTRUV	180.00	18.	VEFBOA	64.45	1.	KUQTIF	75.53
4.	DENDUJ	51.69	18.	XOTSAC	178.90	19.	VEFBUG	60.01	2.	DULFOG	55.28
	ORUZEH	61.58	$2. H_4Al$	e		20	VEECAN	61.09	3.	JAPJOC	60.37
5.	MOFVOS	59.31	1.	EJEZUP	177.89	20.	VEFCAN	62.19	4.	ENODIV	62.86
6.	UPAVUD	61.71	2.	TEHWOS	59.34	21.	VEFCER	69.89	5.	SIXZUW	53.93
7.	BIZWAI02	50.26	3.	PUQHAM	67.87	22.	VEFCIV	52.20	6.	SIYBAF	51.96
8.	WETQES	65.54	4	DUOEOV	64.38	22	VEECOD	51.97	7.	YAGXEL	57.83
9.	FURCAW	179.01	4.	PUQFUI	69.30	23.	VEFCOD	51.49	8.	TUVZAM	63.13
10.	GADPAD	162.10	5		63.94	24.	VEFCUH	178.99	9.	VIMXOF	63.17
11.	EMIGIQ	70.29	5.	PUQHEQ	64.09	25.	DILTEZ	35.48	10.	VIMXUL	62.53
1. H ₄	Pam		6	DIJOELIE	60.35	26		161.48	11.	RUPXAC	64.50
1.	FENREW	63.66	0.	FUQFUE	69.99	20.	ACOZUF	49.42	12.	PUFXUK	62.22
2.	EFAMIH	59.67	7.	PUQGAL01	62.12	27	EA ZUOT	163.58	13.	PUFYAR	39.83
3.	IDAWIV	31.89	0	DUOCOZ	68.76	27.	ΓΑΖΥΟΙ	49.19	14.	DOGYII	63.30
4.	INIYUZ	32.32	8.	PUQGUZ	67.57	20	ICUNOS	161.82	15.	DOGYEE	41.32
5.	FAZVUZ	31.70	0	DUOGAI	60.23	28.	10005	50.87	16.	IMUTUH	45.44
6	VEUTOU	35.67	9.	FUQUAL	69.70	29.	GIKPEW	57.82	17.	IMUVAP	57.35
0.	λεπτου	169.77	10.	PUQHIU	67.41	30.	LILQII	45.92	18.	IMUVET	52.76
7.	DILTID	67.05	11		68.98	3. H ₄ N	er		10		64.80
8.	KEVVOX01	59.64	11.	годпоа	56.32	1.	ICUTOQ	58.50	19.		60.73
9.	TAMMAX	54.13	12	DUOGIT	62.01	2.	ICUTUW	56.28	20	. POXCOW	60.19
10.	XEHTAG	51.31	12.		05.01	3.	ICUVAE	31.58	20.		

Table S2. Values of $\tau_1(R-C_{\alpha}-C-O)$ dihedral angle in bisphosphonate ligands.

Lp.	Database refcode	$\pm \tau_1 [^{\circ}]$	Lp.	Database refcode	$\pm \tau_1 [^\circ]$	Lp.	Database refcode	±τ ₁ [°]
		59.82	7.	LAKPOE	56.78	32.	LICKAL cd	66.95
		58.79	8.	DUPXOC	53.23	6. H ₄ 4P	y-Ris	
21		57.01	9.	POLNEK	58.97	1.	OGATIB	64.26
21.	ΓELZAZ	62.78	10.	GAPSIC	69.19	2.	ODEPAR	59.06
		55.03	11.	HIRJUP	41.05	3.	ODEPEV	59.94
		59.42	12.	MINKEA	42.52	4.	OGASOG	60.52
22.	TAMMEB	52.95	13.	PUNZII	40.68	5.	OGATUN	61.29
23.	GOZPUI	61.10	14.	YUDPAP	62.06	6.	OGATAT	88.47
24.	OXAMUW	50.45	15	GADSUO	59.92	7.	OGATOH	46.60
25.	VIRXAX	58.83	15.	UAPSUU	49.39	8.	OGASUM	40.12
26.	VIMXIZ	55.45	16		66.70	9.	OGATEX	72.09
27.	VIMXEV	55.12	10.	κυγγαρ	60.51	10.	OGAVAV	73.19
28.	VIRXEB	42.30	17.	HIRJOJ	62.96	7. H ₄ Mi	n	
29.	OXAMOQ	41.81	18.	GAPSOI	56.03	1.	ESAVAX	24.37
30.	DOGYUU01	56.47	19.	HIYBAU	176.17	2.	ESAVEB	33.90
31.	KUJGON	35.13	20.	PUNZEE	62.86	3.	ESATUP	44.15
32.	OXAMIK	57.12	21.	HIRKAW	176.94	8. H ₄ Tr	a	
33.	AKUKUO	64.95	22.	POLNIO	64.53	1.	POVRIC	66.54
34.	SUSMIE	64.14	23.	HIXZUL	57.31	2.	POVROI	91.99
35.	VIRXIF	63.31	24.	VEGWOV	66.41	3.	POVRAU	38.78
36.	KUJGUT	71.08	25.	VEGWUB	68.09	4.	POVREY	41.06
5. H	4Ris		26.	VEGXAI	67.96	9. H ₄ Ol	р	
1.	WURPOO	53.94	27.	VEGXEM	68.45	-		
2.	WURPUU	67.22	28.	TAPJUR	46.88	10. H ₄ P	rp	
		55.76	20	TADVAV	72.41	-		
3.	ORUWII	38.44	29.	ΙΑΓΚΑΙ	64.73	11. H ₄ P	рр	
		63.00	30	TIGSOT	72.75	-		
4.	YEFTOT	66.88	50.	10301	69.11			
5.	YEFTIN	58.11	31.	RUFDUT	40.91			
6.	LUVMUL	33.09	32.	LICKAL	75.22			

Figure S1. Experimental X-ray powder pattern (black, T = 298 K, Cu-K α 1) and simulated powder pattern (red, T = 100 K, Mo-K α) based on the results from single-crystal X-ray diffraction for the coordination unit **1a**.

Figure S2. Experimental X-ray powder pattern (black, T = 298 K, Cu-K α 1) and simulated powder pattern (red, T = 100 K, Mo-K α) based on the results from single-crystal X-ray diffraction for the coordination unit **3a**.

Figure S3. Experimental X-ray powder pattern (black, T = 298 K, Cu-K α 1) and simulated powder pattern (red, T = 100 K, Mo-K α) based on the results from single-crystal X-ray diffraction for the coordination unit **4a**.

Scheme S1. Ligands coordination modes in $[M_2(H_3L)_4(H_2O)_2] \cdot 2H_2O$ complexes formed by H_3Pam^- (M =Ni), H_3Ale^- (M =Ni, Cu, Co) and H_3Ner^- (M =Cd. Mn).

Scheme S2. Ligand binding modes in (a) [Ln(HPam)], (b) $[Zn(H_2Pam)] \cdot H_2O$, (c) $[Zn(H_3Pam)_2]$ (d) *trans*- $[Zn(H_3Pam)_2] \cdot 2H_2O$ and (e) $Li[(H_3Ale)(H_2O)_2]$ complexes.

Scheme S3. Risedronate coordination modes in (a) $[Ni_3(HRis)_2(H_2O)_4]$ ·H₂O and $[Ni_3(HRis)_2(H_2O)_4]$ ·3H₂O and (b) $Ni_3(HRis)_2(H_2O)_4]$ ·2H₂O

Table S3. Selected relative energies (ΔE) and torsion angles (τ_1) calculated for conformations and transition states of ligands 1-4.

Conformer	ΔE [kcal/mol]	τ ₁ [°]	Conformer	ΔE [kcal/mol]	τ ₁ [°]
$H_4 dmt Zol(1)$			$H_4 cbt Zol(3)$		
<i>sc</i> ₁ - 1	0.00	-59.0	ap_1 -3	0.00	-179.0
<i>ap</i> ₁ - 1	0.70	-179.3	<i>sc</i> ₁ -3	2.40	-60.5
<i>sc</i> ₂ -1	2.96	+70.2	<i>sc</i> ₂ -3	6.73	+70.4
ac_1 -1	8.52	+110.1	$TSsc_1-ap_1-3$	11.43	-108.0
$TSsc_1-ap_1-1$	17.69	-120.0	$TSsc_2-ap_1-3$	12.59	118.4
$TSac_1-ap_1-1$	10.59	+120.8	TS <i>sc</i> ₁ - <i>sc</i> ₂ - 3	12.68	11.4
TS <i>sc</i> ₂ - <i>ac</i> ₁ -1	11.61	+99.0			
$TSsc_1-sc_2-1$	15.71	+1.1			
$H_4 cppZol(2)$			$H_4 cpt Zol(4)$		
ap_1 -2	0.00	+167.8	ap_1 -4	0.00	+165.8
<i>sc</i> ₁ - 2	3.88	-53.9	<i>sc</i> ₁ -4	6.01	+53.5
ap_2 -2	3.93	-154.1	ap_2 -4	6.73	-166.9
<i>sc</i> ₂ -2	7.17	55.7	<i>sc</i> ₂ -4	6.51	+32.5
$TSap_1-ap_2-2$	6.66	-169.6	<i>sc</i> ₃ -4	8.62	-27.7
$TSap_1-sc_2-2$	14.17	+105.4	<i>sc</i> ₄ - 4	9.21	-63.7
$TSap_2-sc_1-2$	11.54	-103.6	TS <i>sc</i> ₁ - <i>ap</i> ₁ -4	16.69	+128.1
TS <i>sc</i> ₁ - <i>sc</i> ₂ - 2	15.90	-0.3	$TSap_1-ap_2-4$	18.45	-176.2
			$TSsc_4-ap_2-4$	19.39	-112.1
			TS <i>sc</i> ₃ - <i>sc</i> ₄ -4	11.59	-45.3
			$TSsc_1-sc_2-4$	6.71	+43.9
			$TSsc_2-sc_3-4$	12.51	-7.0

1a					
Bond lenghts	Exp.	Theory		Exp	Theory
P1A-O1A	1.500(4)	1.536	P1 <i>B</i> O1 <i>B</i>	1.499(4)	1.540
P1 <i>A</i> -O2 <i>A</i>	1.508(5)	1.585	P1 <i>B</i> O2 <i>B</i>	1.510(4)	1.589
P1 <i>A</i> -O3 <i>A</i>	1.568(4)	1.694	P1 <i>B</i> –O3 <i>B</i>	1.553(4)	1.715
P2A-O4A	1.489(4)	1.537	P2 <i>B</i> O4 <i>B</i>	1.490(4)	1.541
P2A-O5A	1.524(4)	1.583	P2 <i>B</i> -O5 <i>B</i>	1.511(5)	1.604
P2A-O6A	1.568(4)	1.661	P2 <i>B</i> –O6 <i>B</i>	1.570(4)	1.647
RMSD ^a		0.079			0.093
Bond angles					
N1A-C2A-C1A	107.2(4)	104.9	N1 <i>B</i> –C2 <i>B</i> –C1 <i>B</i>	109.1(4)	106.3
O1A–P1A–O2A	116.6(2)	116.2	O1 <i>B</i> –P1 <i>B</i> –O2 <i>B</i>	114.4(2)	121.7
O1 <i>A</i> –P1 <i>A</i> –O3 <i>A</i>	108.8(2)	112.3	O1 <i>B</i> –P1 <i>B</i> –O3 <i>B</i>	111.7(2)	107.6
O2A–P1A–O3A	109.1(2)	104.9	O2 <i>B</i> –P1 <i>B</i> –O3 <i>B</i>	109.8(2)	104.4
O4A–P2A–O5A	114.5(2)	118.0	O4 <i>B</i> –P2 <i>B</i> –O5 <i>B</i>	114.5(2)	116.4
O4A-P2A-O6A	107.9(2)	111.4	O4 <i>B</i> –P2 <i>B</i> –O6 <i>B</i>	108.8(2)	109.1
O5A–P2A–O6A	108.7(2)	106.4	O5 <i>B</i> –P2 <i>B</i> –O6 <i>B</i>	107.9(2)	107.7
RMSD ^b		3.1			4.0
Torsion angles					
O7A-C1A-C2A-N1A	-54.2(5)	-56.3	O7 <i>B</i> –C1 <i>B</i> –C2 <i>B</i> –N1 <i>B</i>	55.0(5)	55.1
P1A-C1A-C2A-N1A	70.7(4)	60.1	P1 <i>B</i> C1 <i>B</i> C2 <i>B</i> N1 <i>B</i>	-65.2(4)	-63.9
P2A-C1A-C2A-N1A	-166.9(3)	-171.7	P2B-C1B-C2B-N1B	169.3(3)	173.0
O7 <i>A</i> C1 <i>A</i> C2 <i>A</i> C3 <i>A</i>	62.9(6)	59.5	O7 <i>B</i> –C1 <i>B</i> –C2 <i>B</i> –C3 <i>B</i>	-61.9(5)	-61.3
P1A-C1A-C2A-C3A	-172.2(4)	175.9	P1 <i>B</i> –C1 <i>B</i> –C2 <i>B</i> –C3 <i>B</i>	177.8(3)	179.7
P2A-C1A-C2A-C3A	-49.8(5)	-55.9	P2B-C1B-C2B-C3B	52.4(5)	55.6
O7 <i>A</i> C1 <i>A</i> C2 <i>A</i> C4 <i>A</i>	-174.2(5)	-176.4	O7 <i>B</i> –C1 <i>B</i> –C2 <i>B</i> –C4 <i>B</i>	175.3(5)	175.0
P1 <i>A</i> C1 <i>A</i> C2 <i>A</i> C4 <i>A</i>	-49.3(6)	-60.1	P1 <i>B</i> C1 <i>B</i> C2 <i>B</i> C4 <i>B</i>	55.0(5)	56.0
P2A-C1A-C2A-C4A	73.1(5)	68.2	P2B-C1B-C2B-C4B	-70.5(5)	-67.1
RMSD ^b		7.3			2.2

Table S4. Experimentally determined and theoretically calculated selected interatomic distances (Å), bond angles (°) and torsion angles (°) for the compound **1a**.

^aRoot mean square deviation of distances (RMSD, in Å) for both ligands. ^bRoot mean square deviation of bond and torsion angles (RMSD, in °) for both ligands.

	3a		4 a	
Bond lenghts	Exp.	Theory	Exp.	Theory
P101	1.4991(18)	1.5442	1.498(2)	1.544
P1O2	1.5087(17)	1.5756	1.505(2)	1.575
P1-O3	1.5628(18)	1.7006	1.564(2)	1.702
P204	1.5011(18)	1.5359	1.498(2)	1.536
P2O5	1.5259(17)	1.5749	1.520(2)	1.574
P206	1.5593(19)	1.7091	1.566(2)	1.711
RMSD ^a		0.0927	. ,	0.093
Bond angles				
N1-C2-C1	108.75(18)	108.61	108.4(2)	107.4
O1-P1-O2	114.69(10)	120.49	114.91(12)	120.53
O1-P1-O3	112.06(10)	108.62	111.84(11)	108.15
O2-P1-O3	111.19(10)	107.78	110.70(12)	107.31
O4-P2-O5	112.19(10)	121.51	112.72(11)	121.48
O4-P2-O6	112.80(10)	108.23	112.40(11)	108.17
O5–P2–O6	108.24(10)	105.45	107.66(12)	105.38
RMSD ^b		4.97		4.74
Torsion angles				
O7-C1-C2-N1	-64.3(2)	-73.2	-65.2(3)	-73.9
P1C1C2N1	53.2(2)	44.8	51.4(3)	43.1
P2-C1-C2-N1	179.21(15)	170.33	178.40(17)	169.45
O7-C1-C2-C3	59.6(3)	50.7	52.9(3)	44.9
P1C1C2C3	177.15(17)	168.80	169.57(19)	161.83
P2C1C2C3	-56.8(3)	-65.7	-63.5(3)	-71.8
O7-C1-C2-C5	167.02(19)	156.84	-	-
P1C1C2C5	-75.5(2)	-85.1	-	-
P2C1C2C5	50.5(3)	40.4	-	-
O7-C1-C2-C6	-	-	171.6(2)	162.9
P1-C1-C2-C6	-	-	-71.7(3)	-80.2
P2-C1-C2-C6	-	-	55.2(3)	46.2
RMSD ^b		9.2		8.5

Table S5. Experimentally determined and theoretically calculated selected interatomic distances (Å), bond angles (°) and torsion angles (°) for the compounds 3a and 4a.

^aRoot mean square deviation of distances (RMSD, in Å) for compounds **3a** and **4a**. ^bRoot mean square deviation of bond and torsion angles (RMSD, in °) for compounds **3a** and **4a**.

	1a				
Bond lengths (Å) Cu1–O2A Cu1–O5A Cu1–O2B Cu1–O5B Cu1–O1W RMSD ^a	<i>Exp.</i> 1.941(5) 1.955(4) 1.933(4) 1.961(4) 2.435(4)	<i>Theory</i> 1.990 1.942 1.976 1.988 2.439 0.003	Bond angles (°) O2A-Cu1-O5A O2A-Cu1-O5B O2A-Cu1-O1W O5A-Cu1-O1W O2B-Cu1-O2A O2B-Cu1-O5A O2B-Cu1-O5B O2B-Cu1-O5B O2B-Cu1-O1W O5B-Cu1-O1W RMSD ^b	<i>Exp</i> 91.02(18) 88.69(19) 85.97(15) 171.26(16) 101.94(15) 174.12(16) 87.33(18) 92.09(18) 99.89(15) 86.76(15)	Theory 89.33 84.10 102.96 168.96 105.64 170.22 88.04 96.96 86.82 84.53 7.39
	3 a			4a	
Bond lengths $(Å)$ Cu1–O2, O2 ⁱ Cu1–O5, O5 ⁱ Cu1–O1 <i>W</i> , O1 <i>W</i> ⁱ RMSD ^a	<i>Exp.</i> 1.9103(19) 1.9440(18) 2.733(3)	<i>Theory</i> 1.9968 1.9507 2.547 0.118		<i>Exp.</i> 1.910(2) 1.939(2) 2.725(3)	<i>Theory</i> 1.994 1.951 2.550 0.113
Bond angles (°) $O2-Cu1-O2^{i}$ $O2-Cu1-O5^{i}$ O2-Cu1-O5 $O2-Cu1-O1W^{i}$ $O5^{i}-Cu1-O5$ $O5-Cu1-O1W^{i}$ O1W-Cu1-O2 O1W-Cu1-O5 $O1W-Cu1-O1W^{i}$ RMSD ^b	180.0 87.18(8) 92.82(8) 78.05(7) 180.0 97.83(7) 101.95(7) 82.17(7) 180.0	180.0 86.06 93.94 72.79 180.0 91.93 107.19 88.09 180.0 3.76		180.0 87.85(8) 92.15(8) 80.60(8) 180.0 97.98(8) 99.40(8) 82.02(8) 180.0	180.0 85.82 94.17 72.76 180.0 93.68 107.22 86.34 180.0 4.32

Table S6. Experimentally determined and theoretically calculated selected interatomic distances (Å) and bond angles (°) related to the metal center for the compounds **1a**, **3a** and **4a**.

^aRoot mean square deviation of distances (RMSD, in Å). ^bRoot mean square deviation of bond angles (RMSD, in °). Symmetry code: (i) -x+1, -y+1, -z+1.

<i>D</i> –H··· <i>A</i>	D–H	H···A	$D \cdots A$	$D-H\cdots A$
Compound 1				
$O3A-H3A\cdots O1B^{ii}$	0.84	1.81	2.579(5)	151
O6 <i>A</i> −H6 <i>A</i> ···O2 <i>W</i>	0.84	2.10	2.616(6)	120
$O7A-H7A\cdots O8W^{iii}$	0.84	1.91	2.695(6)	154
N2 A –H2 A ···O5 A ⁱⁱ	0.88	1.90	2.755(7)	162
$O3B-H3B\cdots O1A^{iv}$	0.84	1.74	2.555(5)	162
O6 <i>B</i> −H6 <i>B</i> ···O6 <i>W</i>	0.84	1.69	2.520(6)	171
$O7B-H7B\cdots O3W^{v}$	0.84	2.30	2.969(6)	137
N2B–H2B····O5B ^{vi}	0.88	1.92	2.795(7)	179
$O1W - H1W \cdots O2W$	0.84	2.16	2.869(6)	142
$O1W - H2W \cdots O3W$	0.84	2.18	2.979(6)	158
O2 <i>W</i> −H3 <i>W</i> ····O7 <i>A</i>	0.84	2.48	3.302(7)	167
$O2W - H4W \cdots O5W$	0.84	1.97	2.806(6)	176
O3 <i>W</i> −H5 <i>W</i> ···O4 <i>B</i>	0.84	1.93	2.734(5)	160
$O3W - H6W \cdots O3A^{iv}$	0.84	2.18	2.993(6)	164
$O4W-H7W\cdots O7A$	0.84	2.09	2.886(6)	157
$O4W - H8W \cdots O6B^{vii}$	0.84	2.08	2.880(7)	159
$O5W - H9W \cdots O9W^{iii}$	0.84	2.08	2.801(9)	144
$O5W$ – $H10W$ ···O4 B^{vii}	0.84	1.96	2.789(6)	168
$O6W-H11W\cdots O9W^{viii}$	0.84	1.83	2.659(6)	169
$O6W-H12W\cdots O7W$	0.84	1.95	2.775(7)	169
O7 <i>W</i> −H13 <i>W</i> ···O1 <i>A</i>	0.84	2.11	2.876(7)	151
O7W-H14 W ···O3 W ^v	0.84	2.09	2.888(7)	159
O8W-H15 W ···O1 B ^{ix}	0.84	1.99	2.822(6)	169
O8 <i>W</i> −H16 <i>W</i> ····O4 <i>A</i>	0.84	1.88	2.699(5)	163
$O9W-H17W\cdots O4W^{v}$	0.84	2.03	2.684(7)	134
O9 <i>W</i> −H18 <i>W</i> ····O4 <i>A</i>	0.84	1.98	2.740(6)	149
$C3A-H3AC\cdots O4W$	0.98	2.38	3.357(7)	171
$C4A-H4AA\cdots O2W^{ix}$	0.98	2.48	3.362(8)	149
$C4A-H4AB\cdots O1A$	0.98	2.57	3.106(7)	114
$C4A-H4AB\cdots O3B^{ix}$	0.98	2.48	3.390(7)	154
C4 <i>A</i> −H4 <i>AC</i> ···O4 <i>A</i>	0.98	2.37	3.131(8)	133
$C21A-H21A\cdots O1W^{ix}$	0.95	2.58	3.473(6)	156
C4 <i>B</i> −H4 <i>BB</i> ····O4 <i>B</i>	0.98	2.35	3.108(8)	133
C4 <i>B</i> −H4 <i>BC</i> ···O3 <i>B</i>	0.98	2.57	3.159(7)	119
C21 B –H21 B ····O7 W ^{iv}	0.95	2.50	3.442(7)	171
C41 <i>B</i> -H41 <i>B</i> ···O6 <i>W</i> vi	0.95	2.55	3.251(8)	131

 Table S7. Selected hydrogen bonds for compound 1a.

Symmetry codes: (ii) *x*+1, *y*+1, *z*; (iii) *x*+1, *y*, *z*; (iv) *x*, *y*-1, *z*; (v) *x*-1, *y*, *z*; (vi) *x*-1, *y*-1, *z*; (vii) *x*, *y*, *z*-1; (viii) *x*, *y*, *z*+1; (ix) *x*, *y*+1, *z*.

<i>D</i> –H··· <i>A</i>	D–H	H···A	$D \cdots A$	$D-\mathrm{H}\cdots A$
Compound 3a				
O3–H3…O5 ^v	0.84	1.84	2.666(3)	168
O6−H6…O4 ^x	0.84	1.68	2.521(3)	177
$O7-H7\cdots O1W$	0.84	2.22	3.029(3)	161
N2–H2 N ···O1 ^{xi}	0.88	1.77	2.614(3)	159
$O1W - H1W \cdots O6^{i}$	0.84	2.40	3.225(3)	169
$O1W - H2W \cdots O1^{iii}$	0.84	1.99	2.810(3)	164
C3–H3 <i>A</i> …O4	0.99	2.31	3.067(3)	132
C41–H41…O7 ^v	0.95	2.58	3.155(3)	120
C51–H51…O4 ^v	0.95	2.31	3.261(3)	176
Compound 4a				
O3−H3···O5 ^v	0.84	1.88	2.689(3)	161
O6−H6····O4 ^x	0.84	1.72	2.552(3)	174
$O7-H7\cdots O1W$	0.84	2.23	3.053(3)	166
N2–H2 N ···O1 ^{xi}	0.88	1.81	2.646(4)	158
$O1W - H1W \cdots O6^{i}$	0.84	2.48	3.218(3)	147
$O1W - H2W \cdots O1^{iii}$	0.84	1.98	2.808(3)	169
C3−H3 <i>B</i> ····O4	0.99	2.25	3.056(4)	138
C6−H6 <i>B</i> ····O4 ^x	0.99	2.53	3.501(4)	169
C41–H41…O7 ^v	0.95	2.49	3.118(4)	124
C51–H51…O4 ^v	0.95	2.27	3.216(4)	177
Symmetry codes: (x) $-x+1$,	-y+1, -z+2	2; (xi) - <i>x</i> , -	-y, -z+1.	

 Table S8.
 Selected hydrogen bonds for compounds 3a and 4a.

Figure S4. (a) The discrete coordination unit of complex **4a** with the atom-numbering scheme. Displacement ellipsoids except Cu1 atom are drawn at 50% probability level. All C-bond H-atoms are omitted for clarity. (b) Coordination environment of Cu1 center. Symmetry code (i) -x+1, -y+1, -z+1.

Figure S5. Coordination modes of (a) H_3 dmtZol⁻ in 1a, (b) H_3 cbtZol⁻ in 3a and (c) H_3 cptZol⁻ in 4a. All C-bond H-atoms are omitted for clarity

Figure S6. The crystal packing of **1a**. (a) The role of lattice water molecules in stabilization of 2D layer. (c) Assembling of neighbouring layers (shown in green, grey and light blue) into 3D supramolecular network through O–H···O interaction mediated by lattice water molecules. All C-bounded H-atoms, methyl groups, imidazole ring (picture a) and lattice water molecules not involved in arrangement of 2D or 3D structures are omitted for clarity. The intra- and interlayer hydrogen bond network is shown as lime and orange dashed lines, respectively. Symmetry codes are given in Table S7.

Figure S7. (a) The 2D layer of **4a** generated by means of O–H…O hydrogen bonds shown as light orange dashed lines. (b) and (c) Connection of neighbouring layers (shown in grey and green) into 3D supramolecular network through N–H…O interactions (blue dashed lines) in **4a** and **3a**, respectively. All C-bounded H-atoms are omitted for clarity. Symmetry codes are given in Table S8.

Figure S8. Optimized molecular geometry and the atom-numbering scheme of ligands 1, 3 and 4 and related complexes 1a, 3a and 4a.

Figure S9. Experimental IR spectrum of complex 1a.

Figure S10. Experimental IR spectrum of complex 3a.

Figure S11. Experimental IR spectrum of complex 4a.

Figure S12. Experimental IR spectrum of ligand 1.

Figure S13. Experimental IR spectrum of ligand $3 \cdot H_2O$.

Figure S14. Experimental IR spectrum of ligand 4-4H₂O.

Figure S15. Comparison of experimental and the corresponding theoretical FT-IR spectrum (red and black line, respectively) of complex 1a.

Figure S16. Comparison of experimental and the corresponding theoretical FT-IR spectrum (pink and black line, respectively) of complex 3a.

Figure S17. Comparison of experimental and the corresponding theoretical FT-IR spectrum (brown and black line, respectively) of complex 4a.

Figure S18. Comparison of experimental and the corresponding theoretical FT-IR spectrum (blue and black line, respectively) of ligand 1.

Figure S19. Comparison of experimental and the corresponding theoretical FT-IR spectrum (green and black line, respectively) of ligand 3.

Figure S20. Comparison of experimental and the corresponding theoretical FT-IR spectrum (red and black line, respectively) of ligand 4.

	Calcd ^a	Exp.			
No.	v [cm ⁻¹]	v [cm ⁻¹]	General assignment ^{b,c}	Functional group	PED ^d
1.	3629		v _{as} (O–H)	H ₂ O	v(O64–H66)(62), v(O64–H65)(6)
2.	3615		$\nu(O-H)$	nhoanhonata DO II	v(O10-H11)(75)
3.	3603		(0-11)	phosphonate 10-11	v(O37–H38)(100)
4.	3499		ν _s (O–H)	H ₂ O	v(O64–H65)(54), v(O64–H66)(6)
5.	3472	3650-3200 br	$\nu(N-H)$	imidazolo	v(N15–H16)(86), v(O43–H44)(9)
6.	3469			minuazoic	v(N46–H47)(94)
7.	3284		ν(O–H)	hydroxyl CO–H	v(O12–H13)(58), v(O41–H42)(5)
8.	3267		$\nu(O-H)$	nhosphonate PO_H	v(O41–H42)(66), v(O12–H13)(5)
9.	3194		((0-11)	phosphonate 10-11	v(O6–H7)(62)
10.	3171				v(C58–H59)(98)
11.	3168	3165 br			v(C27–H28)(97)
12.	3152	5105 01	$\nu(C-H)$	imidazole	v(C31–H32)(87), v(C29–H30)(9)
13.	3151				v(C62–H63)(88), v(C60–H61)(9)
14.	3121	3088 br			v(C29–H30)(89), v(C31–H32)(10)
15.	3119	5000 01			v(C60–H61)(89), v(C62–H63)(10)
16.	3007		v _{as} (C–H)		v(C19–H21)(70), v(C19–H22)(26)
17.	2994				v(C23–H26)(59), v(C23–H25)(38)
18.	2991				v(C50–H52)(50), v(C50–H51)(49)
19.	2980	2991 hr		-CH ₂	v(C19–H22)(52), v(C19–H20)(33), v(C19–H21)(13)
20.	2976	277101			v(C50–H53)(31), v(C50–H51)(24), v(C54–H56)(19), v(C50–H52)(17)
21.	2973				v(C54–H56)(46), v(C54–H57)(23), v(C50–H53)(12), v(C50–H52)(12)
22.	2972				v(C23-H25)(41), v(C23-H24)(32), v(C23-H26)(25)
23.	2962				v(C54–H55)(50), v(C54–H57)(42), v(C54–H56)(7)
24.	2896	2901			v(C19–H20)(62), v(C19–H22)(19), v(C19–H21)(14)
25.	2892	2701	ν (C-H)	-CH ₂	v(C50–H53)(54), v(C50–H51)(22), v(C50–H52)(20)
26.	2883	- 2872			v(C23–H24)(65), v(C23–H25)(17), v(C23–H26)(13)
27.	2880				v(C54–H55)(45), v(C54–H57)(26), v(C54–H56)(24)
28.	1647	1634, 1613 br	$\rho_{s}(H_{2}O)$	H ₂ O	ρ(H65–O64–H66)(31)
29.	1589	1579	$v(C=C) v(C-N) \delta(im)$	imidazole	v(C60–C62)(26), δ(H47–N46–C60)(17), δ(H47–N46–C58)(13), v(C58–N45)(9)
30.	1588	1017		minduzoit	δ(N14-C31-C32)(44), v(C29-C31)(19), δ(H16-N15-C29)(6), δ(N15-C29-H30)(5)
31.	1547	1542	$v(C=N) v(C-N) \delta(im)$	imidazole	δ(H47–N46–C60)(61), v(C58–N46)(13), v(C58–N45)(7)
32.	1544	1012		minduzoie	δ(H16–N15–C29)(36), v(C27–N15)(20), v(C27–N14)(9), δ(N15–C29–H30)(8)

Table S9. Frequencies of theoretical and experimental IR bands and their vibrational assignments of complex 1a.

33.	1514				δ(H24-C23-H25)(26), δ(H25-C23-H26)(26), δ(H21-C19-H22)(13), δ(N14-C31-H32)(9)
34.	1510	- 1503-1479 br	1503-1479 br $\delta_{as}(CH_3)$	CH .	δ(H56–C54–H57)(34), δ(H51–C50–H52)(17), δ(H55–C54–H56)(9), δ(H47–N46–C60)(8)
25	1400			-СП3	δ(H21–C19–H22)(39), δ(H24–C23–H25)(18), δ(H20–C19–H21)(11), δ(N14–C31–H32)(8)
33.	1489				δ(H51–C50–H52)(30), δ(H52–C50–H53)(27), δ(H56–C54–H57)(12), δ(H55–C54–H57)(8)
36.	1459	1464		imidazole	v(C60–N46)(23), v(C58–N46)(21), v(C60–C62)(15), \delta(H55–C54–H56)(5)
37.	1456	1464	V(C=N), V(C-N), V(C=C)		v(C27–N15)(28), v(C29–N15)(23), v(C29–C31)(19)
38.	1425	1407 141(1			δ(C18-C23-H26)(13), δ(H24-C23-H26)(11), δ(H20-C19-H21)(9), δ(C18-C23-H25)(9)
39.	1417	1427-1416 br	S (CH)	CII	δ(H55-C54-H56)(11), δ(C49-C50-H52)(11), δ(H52-C50-H53)(11), δ(C49-C54-H56)(9)
40.	1403	1200	$\delta_{s}(CH_{3})$	$-CH_3$	δ(H20–C19–H22)(14), δ(C18–C19–H20)(11), δ(C18–C19–H21)(11), δ(C18–C19–H22)(9)
41.	1396	1398			δ(C49–C54–H56)(12), δ(C49–C50–H52)(8), δ(H55–C54–H56)(8), δ(H51–C50–H52)(7)
42.	1374	1201	δ (COH), v(C=N), v(C-N)		δ(C17–O12–H13)(27), v(C31–N14)(10), v(C27–N14)(6), δ(H30–C29–C31)(5)
43	1371	1381	v(C=N), v(C-N)	hydroxyl C–O–H,	v(C62–N45)(22), v(C58–N45)(15), δ(H61–C60–C62)(7), δ(C60–C62–H63)(7)
44.	1350	1356	δ(COH)	imidazole	δ(C48–O43–H44)(71), ν(C48–C49)(8)
45.	1313	1311	S(DOIL)	phosphonate P–O–H	δ(P2-O6-H7)(24), δ(P34-O41-H42)(17)
46.	1273	1251	o(POH)		δ(P34-O41-H42)(38), δ(P2-O6-H7)(13)
47.	1241	1011		-CH3	ν(C48–C49)(17), δ(C49–C50–H53)(8), δ(C49–C54–H55)(7), ν(C49–N45)(5)
48.	1237	1211	$\rho_r(CH_3)$		ν(C17–C18)(15), δ(C18–C23–H24)(8), δ(C18–C19–H20)(6), ν(C18–C19)(5)
49.	1190	1102			δ(C49–C50–H52)(11), δ(C49–C54–H56)(11), ν(C49–N45)(5), δ(C49–C54–H57)(4)
50.	1187	1193			δ(C18–C23–H26)(12), δ(C18–C19–H21)(12), ν(C31–N14)(6), δ(C18–C19–H22)(4)
51.	1165	1175		1 1 (D O	ν(P3–O8)(45), δ(P3–O10–H11)(24), δ(H47–N46–C60)(7)
52.	1132	1137	V(P=O), 0(POH)	phosphonate P=O	δ(P33–O37–H38)(29), ν(P33–O35)(20), δ(H47–N46–C60)(18), δ(H47–N46–C58)(10)
53.	1108	1100	v(C-O)	hydroxyl C–OH	ν(C17–O12)(31), δ(C29–C31–H32)(11), ν(P34–O39)(6)
54.	1106	1109	v(P=O)	phosphonate P=O	v(P34–O39)(71)
55.	1093	1094	$v(C, \mathbf{N})$	imidazala	v(C60–N46)(44), δ(N45–C62–H63)(7), δ(N46–C58–H59)(6), δ(C60–C62–H63)(5)
56.	1089	1084	V(C-N)	IIIIIdazole	v(C29–N15)(49), δ(C27–N14–C31)(12), δ(N15–C27–H28)(6), δ(N14–C27–H28)(6)
57.	1078	1067	v(C–O)	hydroxyl C–OH	ν(C48–O43)(44), δ(H47–N46–C58)(10)
58.	1076	1007	v(P=O)	phosphonate P=O	ν(P2–O4)(71), δ(C29–C31–H32)(14), δ(N14–C31–H32)(11)
59.	1030	1041	ν(P=O), δ(POH)	phosphonate P=O	ν(P33–O35)(47), δ(P33–O37–H38)(28), ν(P33–O36)(5)
60	1004	1012	S (im)	imidazolo	δ(H47–N46–C60)(18), δ(N46–C60–H61)(9), δ(N45–C58–N46)(8), δ(C58–N46–C60)(7)
-00.	1004	1013	Oring(IIII)	IIIIdazole	δ(C29–C31–H32)(15), δ(C27–N14–C31)(11), δ(N15–C29–H30)(11), δ(N14–C31–C29)(7)
61.	975				ν(C48–C49)(31), δ(C49–C54–H55)(8), ν(C49–C54)(7)
62.	973	001	a(CH ₂)	CH.	ν(C17–C18)(22), ν(C18–C19)(12), δ(C18–C23–H25)(8), δ(C18–C23–H24)(8)
63.	971))) 1	$Pr(C_{113})$	-0113	δ(C18–C19–H22)(19), ν(C18–C23)(17), δ(C18–C23–H25)(7), δ(C18–C23–H26)(5)
64.	969				δ(C49–C50–H51)(18), δ(C49–C54–H57)(18), ν(C49–C54)(14), ν(C49–C50)(12)
65	926	928	δ . (im)	imidazole	δ(C27–N15–C29)(20), δ(H16–N15–C27)(18), δ(N15–C29–C31)(15), δ(N14–C31–C29)(14)
05.	920 928	928	$\delta \qquad 0_{ring}(1m)$	minuazoie	δ(C58–N46–C60)(28), δ(H47–N46–C58)(24), δ(H47–N46–C60)(22), δ(N46–C60–C62)(5)

66.	906	907			v(P33–O36)(17), δ(C29–C31–H32)(13), v(C17–C18)(9), v(P33–O35)(8)
67.	896	893 - br	v(P-O)	phosphonate P-O	v(P34–O40)(23), v(P2–O5)(10), v(P34–O41)(7)
68.	876				v(P3-O9)(20), v(P33-O36)(11), v(P2-O5)(9)
69.	837		v(alcal)	alcolotal with	v(C18–C19)(11), v(P2–C17)(11)
70.	827		V(SKEI)	skeletal viu.	v(C49–C50)(9), v(P33–C48)(8)
71.	809	815 br			γ(H28–C27,N14,N15)(68), τ(N14–C27–N15–C29)(12), γ(H30–C29,N15,C31)(4)
70	002		$\gamma(im), \tau(im)$	imidazole	γ(H59–C58,N45,N46)(64), τ(N45–C58–N46–C60)(14), γ(H61–C60,N46,C62)(6),
12.	802				τ (C48–C49–N45–C58)(4)
73.	771				v(P34–O41)(38), v(P33–O37)(12)
74.	764	749 br	v(P-O)	phosphonate P-OH	v(P33–O37)(13), v(P2–O6)(12), v(P3–O10)(7)
75.	755				v(P33–O37)(19), v(P34–O41)(13), v(P2–O6)(8), v(P3–O10)(5)
76	(00				τ(C48-C49-N45-C58)(17), δ(N45-C62-C60-N46)(16), δ(N45-C49-C50)(12),
/6.	690	(90	89 $\tau(im), \delta(skel)$	imidazole, skeletal vib.	v(C49–N45)(9)
	(07	689			τ(C17-C18-N14-C27)(15), δ(C29-C31-H32)(14), δ(N14-C18-C19)(13),
//.	08/				τ(N14-C31-C29-N15)(11)
78.	653	650	$\rho_{\rm w}({\rm H_2O})$	H ₂ O	δ(O64–H65–O40)(49), δ(O64–H66–O36)(5)
70	624				τ(N45-C62-C60-N46)(57), ν(C49-N45)(8), τ(C62-C60-N46-C58)(7),
79.	034	623			$\tau(N45-C58-N46-C60)(5)$
80.	633		τ(im)	imidazole	τ(N14-C31-C29-N15)(48), τ(C27-N15-C29-C31)(8), τ(N14-C27-N15-C29)(7)
81.	583	602			τ(N45-C58-N46-C60)(39), τ(N45-C62-C60-N46)(17), τ(C62-C60-N46-C58)(8)
82.	580	002			τ(N14-C27-N15-C29)(44), τ(N14-C31-C29-N15)(18), τ(C31-C29-N15-C27)(9)
83.	538		$\rho_t(H_2O)$	H ₂ O	δ(O64–H66–O36)(36), δ(O64–H65–O40)(8)
84.	522	560	S(alval) -(alval)	alcolotol wib	δ(O43-C48-C49)(7), δ(N45-C49-C48)(6), τ(N45-C49-C48-P33)(5), δ(N45-C49-C54)(4)
85.	515		o(skel), t(skel)	skeletal vid.	δ(P33-C48-O49)(5), δ(N45-C49-C48)(5), δ(C50-C49-C54)(4)
86.	467	486	v(Cu–O)	metal-ligand vib.	v(Cu1–O5)(6), v(Cu1–O9)(4)
87.	421		δ(skel)	skeletal vib.	δ(N45-C49-C50)(5), δ(N14-C18-C19)(4)
00	410	438	S(al-al) S(OBO)	skeletal vib.,	S(N14 C18 C10)(5) S(C12 C17 C18)(5) S(C8 B2 C0)(5)
00.	419		o(skel), o(OPO)	phosphonate O-P-O	0(114-0.16-0.19)(3), 0(0.12-0.17-0.16)(3), 0(0.8-P3-0.9)(3)
89.	398	415	S(OPO) S(alcal)	phosphonate O-P-O	δ(O8–P3–O10)(9), δ(C19–C18–C23)(5), δ(O12–C17–C18)(4)
90.	396	415	o(OPO), o(skel)	skeletal vib.	δ(C19–C18–C23)(11), δ(O39–P34–O41)(7), δ(C17–C18–C19)(5)

^aScaling factors for the calculated harmonic frequencies: 0.943 for modes 1-27, 0.978 for modes 28-43, 1.000 for modes 44-90. ^bAbbreviations: br – broad, v – stretching, δ – in-plane bending, ρ_r – rocking, ρ_s – scissoring, ρ_w – wagging, ρ_t – twisting, γ – out-of-plane bending, τ – torsion. Subscripts: as – antisymmetric; s – symmetric. ^cVibrational bands assignment for the most characteristic functional groups based on the significant contribution in the potential energy distribution.^dThe PED values are listed if a contributor is among the top four and is $\geq 4\%$.

	Calcd ^a	Exp.			
No.	v [cm ⁻¹]	ν [cm ⁻¹]	General assignment ^{b,c}	Functional group	PED ^d
1.	3639		v _{as} (O–H)	H ₂ O	v(O34–H35)(43)
2.	3634	3558	у(О H)	nhosphonata DO H	v(O6–H7)(56)
3.	3630		v(0-II)		v(O10–H11)(54)
4.	3498	2118	ν(N–H)	imidazole	v(N15–H16)(60)
5.	3486	3440	ν _s (O–H)	H ₂ O	v(O34–H36)(34)
6.	3283	3420-3180 br	ν(O–H)	hydroxyl CO-H	v(O12–H13)(35)
7.	3172	3161			v(C32–H33)(52), v(C30–H31)(6)
8.	3145	21/1	ν(C–H)	imidazole	v(C28–H29)(67)
9.	3140	5141			v(C30–H31)(43), v(C32–H33)(4)
10.	3038				v(C19–H20)(47), v(C19–H21)(11)
11.	3019	3050-3000 br	$v_{as}(C-H)$	-CH ₂ -	v(C25–H26)(49), v(C25–H27)(20)
12.	2991				v(C22–H23)(59), v(C22–H24)(12)
13.	2969	2981			v(C19–H21)(63), v(C19–H20)(15)
14.	2941	2950	v _s (C–H)	-CH ₂ -	v(C25–H27)(36), v(C25–H26)(15)
15.	2919	2930-2920 br			v(C22–H24)(44), v(C22–H23)(9)
16.	1627	1649 br	$\rho_{\rm s}({\rm H_2O})$	H ₂ O	δ(H35–O34–H36)(12)
17.	1563	1560 br	$v(C=C), \delta(im)$	imidazole	δ(H16–N15–C30)(26), ν(C30–C32)(15)
18.	1523	1300 01	v(C=N), v(C-N)	imidazole	v(C28–N15)(21), v(C28–N14)(13)
19.	1478	1473	$\rho_{\rm s}({\rm CH}_2)$	-CH ₂ -	δ(H20–C19–H21)(16), δ(H23–C22–H24)(9)
20.	1443	1427	v(C–N), v(C=C), v(C=N)	imidazole	v(C30–N15)(12), v(C30–C32)(8), v(C28–N15)(7), v(C28–N14)(4)
21.	1433	1437	$\rho_{\rm s}({\rm CH}_2)$	-CH ₂ -	δ(H26–C25–H27)(24), δ(C18–C25–H26)(5)
22.	1366	1254	δ(COH)	hydroxyl C-O-H	δ(C17–O12–H13)(28)
23.	1355	1554	v(C–N)	imidazole	v(C32–N14)(13), v(C28–N14)(11)
24.	1320	1221	$\rho_{\rm w}({\rm CH_2})$	-CH ₂ -	δ(C18-C25-H26)(6), δ(C18-C19-H20)(6), δ(C22-C19-H20)(6)
25.	1307	1521	δ(im)	imidazole	δ(C28–N15–H16)(17), δ(C30–N15–H16)(16)
26.	1266	1272	2(CH)	СЦ	ν(C18–N14)(7), δ(C18–C25–H27)(5), δ(C22–C25–H27)(5)
27.	1262	1257	$\rho_{w}(CH_{2})$	-Cn ₂ -	δ(H23-C22-C25)(6), δ(C19-C22-H23)(5)
28.	1243	1242	ν (C–N), ρ _t (CH ₂)	imidazole,CH2	v(C32–N14)(11), δ(C22–C25–H27)(7), v(C28–N15)(5), δ(C18–C25–H27)(5)
29.	n.o.	1224	-	-	n.o.
30.	1204	1199	v(skel)	skeletal vib.	v(C17–C18)(21)
31.	1159	1165	$\nu(\mathbf{P}-\mathbf{O}) \ \delta(\mathbf{P}\mathbf{O}\mathbf{H})$	nhosphonete D-O	v(P2–O4)(5), δ(P2–O6–H7)(4)
32.	1143	1149	v(1-0), 0(FOH)	phosphonate r=0	v(P2–O4)(13), δ(P2–O6–H7)(12)
33.	1089	1100	v(C–O), v(C–N)	hydroxyl C–OH, imidazole	v(C17–O12)(9), v(C30–N15)(8)

Table S10. Frequencies of theoretical and experimental IR bands and their vibrational assignments of complex 3a.

34.	1055	1063	(P-O) S(POII)	nh a sult a nata D-O	ν(P3–O8)(11), δ(P3–O10–H11)(7)
35.	1040	1042	V(P=O), 0(POH)	phosphonate P=O	δ(P2–O6–H7)(23), ν(P2–O4)(16)
36.	1003	1000	$\delta_{ring}(im), v(skel)$	imidazole, skeletal vib.	δ(H16–N15–C30)(17), v(C18–N14)(4), v(C17–C18)(4)
37.	984	986	$\delta_{ring}(im), \delta_{ring}(cbt)$	imidazole, cyclobutane	δ(H16–N15–C30)(10), v(C22–C25)(6), v(C19–C22)(6), v(C17–C18)(5)
38.	957	967	v(P=O)	phosphonate P=O	v(P3–O8)(8), v(P2–O4)(6)
39.	929	938	v(R O)	nhoonhonoto D. O.	v(P3–O9)(17), v(P3–O8)(8)
40.	917	909	V(F-O)	phosphonate P-O	v(P2–O5)(7)
41.	886	001		imidazole	γ(H33–C32,N14,C30)(6), δ(C17–C18–N14)(4)
42.	869	004	γ(im)		γ(H33–C32,N14,C30)(49)
43.	838	846			γ(H33–C32,N14,C30)(12), γ(H31–C30,N15,C32)(6), v(C17–P2)(4)
44.	756	770	v(B , O)		v(P2–O6)(14), v(P3–O10)(7)
45.	729	723	V(P-O)	phosphonate P-OH	v(P3–O10)(23)
46.	656	650	-(im)	imidazala	τ(C18–N14–C32–C30)(17), τ(C17–C18–N14–C28)(10)
47.	630	630		IIIIIdazole	ν(C18–N14)(10), τ(N14–C28–N15–C30)(5)
48.	581	596	$\rho_{\rm w}({\rm H_2O})$	H ₂ O	δ(O34–H35–O40)(21)
49.	554	550	v(Cv, O)	motal ligand with	v(Cu1–O5)(4)
50.	535	332	v(Cu-O)	metai-ngand vio.	δ(O12–C17–C18)(4), ν(Cu1–O9)(3)
51.	465	478	τ(skel)	skeletal vib.	τ(C25-C22-C19-C18)(5)
52.	436	420	S(OPO)	nhoonhonoto O D O	δ(08–P3–O9)(10), δ(09–P3–O10)(4)
53.	422	420	0(0P0)	phosphonate O-P-O	δ(O8–P3–O10)(7)

^aScaling factors for the calculated harmonic frequencies: 0.950 for modes 1-15, 0.975 for modes 16-23, 1.000 for modes 24-53. ^bAbbreviations: br – broad, v – stretching, δ – in-plane bending, $\delta_{ring}(cbt)$ –cyclobutane ring breatching, ρ_r – rocking, ρ_s – scissoring, ρ_w – wagging, ρ_t – twisting, γ – out-of-plane bending, τ – torsion. Subscripts: as – antisymmetric; s – symmetric. ^cVibrational bands assignment for the most characteristic functional groups based on the significant contribution in the potential energy distribution.^dThe PED values are listed if a contributor is among the top four and is $\geq 4\%$ (except vib. no. 50).

	Calcd ^a	Exp.	_		
No.	ν [cm ⁻¹]	ν [cm ⁻¹]	General assignment ^{b,c}	Functional group	PED ^d
1.	3618	3564	ν(O–H), ν _{as} (O–H)	phosphonate PO–H, H ₂ O	v(O6–H7)(38), v(O37–H38)(8)
2.	3614		v(O-H)	phosphonate PO-H	v(O10–H11)(56)
3.	3483	2118	v(N-H)	imidazole	v(N15–H16)(98)
4.	3478	5440	v _s (O–H)	H ₂ O	v(O37–H39)(42)
5.	3274	3420-3200 br	v(O-H)	hydroxyl CO–H	v(O12–H13)(45)
6.	3162	3165	-		v(C35–H36)(67), v(C33–H34)(6)
7.	3134	3142	v(C-H)	imidazole	v(C31–H32)(68)
8.	3127	5142			v(C33–H34)(76), v(C35–H36)(6)
9.	3005	3029	-		v(C19–H20)(53), v(C19–H21)(39)
10.	2987	2982	$v_{as}(C-H)$		v(C28–H30)(51), v(C28–H29)(37)
11.	2962	2957			v(C25–H27)(31), v(C22–H23)(27), v(C25–H26)(6)
12.	2954	2050 2040 br	v _s (C–H)	СЧ	v(C19–H21)(49), v(C19–H20)(39), v(C25–H27)(7)
13.	2944	2930-2940 01	v _{as} (C–H)	-0112-	v(C22–H23)(45), v(C25–H27)(34), v(C22–H24)(10)
14.	2929	2925	-		v(C28–H29)(31), v(C28–H30)(20)
15.	2904	2910	$\nu_{\rm s}({\rm C-H})$		v(C22–H24)(36), v(C25–H26)(15), v(C22–H23)(10)
16.	2891	2878			v(C25–H26)(61), v(C22–H24)(25), v(C25–H27)(9)
17.	1625	1645	$\rho_{s}(H_{2}O)$	H ₂ O	δ(H38–O37–H39)(15)
18.	1562	1563 br	$\delta(im), \nu(C=C)$	imidazole	δ(H16–N15–C33)(40), ν(C33–C35)(28), δ(H16–N15–C31)(24)
19.	1520	1505 01	$v(C-N), v(C=N), \delta(im)$	IIIIdazoic	v(C31–N15)(29), v(C31–N14)(18), δ(H16–N15–C33)(15), δ(N15–C33–H34)(4)
20.	1490	_			δ(H20–C19–H21)(17), δ(H23–C22–H24)(9), δ(H29–C28–H30)(7)
21.	1469	_	o (CHa)	_CH_	δ(H23–C22–H24)(17), δ(H20–C19–H21)(13), δ(H26–C25–H27)(13)
22.	1463	1459	p _s (en ₂)	-0112-	δ(H29–C28–H30)(22), δ(H20–C19–H21)(7)
23.	1450	_			δ(H26–C25–H27)(33), δ(H23–C22–H24)(17), δ(H29–C28–H30)(6), δ(H20–C19–H21)(5)
24.	1441		v(C–N), v(C=C), v(C=N)	imidazole	v(C33–N15)(13), v(C33–C35)(10), v(C31–N15)(9), v(C31–N14)(5)
25.	1364	1356	ν(C–N), ρ _w (CH ₂)	imidazole, –CH ₂ –	v(C35–N14)(14), δ(C18–C19–H20)(14), δ(H20–C19–C22)(13), v(C31–N14)(11)
26.	1354	1550	δ(COH)	hydroxyl C–O–H	δ(C17–O12–H13)(27)
27.	1325	1321	$\rho_w(CH_2)$	-CH ₂ -	δ(C25–C28–H30)(6), δ(C18–C28–H30)(6), δ(C19–C22–H24)(5), δ(C22–C25–H26)(5)
28.	1307	1303	δ(im)	imidazole	δ(H16–N15–C33)(32), δ(H16–N15–C31)(32)
29.	1272	_	$\rho_w(CH_2)$	-CH ₂ -	δ(C18–C19–H21)(14), δ(H23–C22–C25)(11), δ(C22–C25–H26)(9), δ(C19–C22–H23)(7)
30.	1252	1239	v(C-N)	imidazole	v(C18–N14)(17), v(C35–N14)(13), v(C31–N15)(7), δ(H23–C22–C25)(4)
31.	1223		$\rho_t(CH_2)$	-CH ₂ -	δ(H27–C25–C28)(7), δ(C19–C22–H23)(5), δ(C22–C25–H27)(4), ν(C17–C18)(4)
32.	1176	1195	$\delta(im)$	imidazole	δ(H16–N15–C31)(12), δ(H16–N15–C33)(12)

 Table S11. Frequencies of theoretical and experimental IR bands and their vibrational assignments of complex 4a.

33.	1152	1161 hr	ν(Ρ=Ο), δ(ΡΟΗ)	phosphonate P=O	ν(P2–O4)(16), δ(P2–O6–H7)(14)
34.	1138	1101 01			$\delta(P3-O10-H11)(30), v(P3-O8)(12)$
35.	1094	1096	v(C–N)	imidazole	ν(C33–N15)(18), δ(N15–C31–H32)(4), ν(C18–N14)(4)
36.	1072	1063	v(C–O)	hydroxyl C–OH	ν(C17–O12)(11), δ(P3–O10–H11)(5)
37.	1052	1005	$y(\mathbf{D} = \mathbf{O}) \ \delta(\mathbf{D} \mathbf{O} \mathbf{H})$	phosphonate P=O	ν(P3–O8)(18), δ(P3–O10–H11)(14)
38.	1041	1037	v(r=0), 8(r0H)		(P2-O6-H7)(21), v(P2-O4)(15)
39.	983	1000	$\delta_{ring}(im)$	imidazole	δ(H16–N15–C33)(10)
40.	965	957	v(C–C)	CH2CH2	v(C19–C25)(21), v(C25–C28)(20)
41.	931	934	w(B, Q)	phosphonate P–O	v(P3–O9)(20), v(P3–O8)(10)
42.	916	911	V(P=0)		v(P2–O5)(15), v(P2–O4)(7)
43.	898	887	v(C–C)	CH2CH2	v(C22–C25)(16), v(C19–C22)(5)
44.	852	839	γ(im)	imidazole	γ(H32–C31,N14,N15)(9), γ(H36–C35,N14,C33)(9), γ(H34–C33,N15,C35)(7)
45.	746	769	ν(Р–О)	phosphonate P–OH	v(P2–O6)(15), v(P3–O10)(6)
46.	729	739			v(P3–O10)(18)
47.	639	642		imidazole	τ(C18–N14–C35–C33)(7)
48.	626	042	τ(im)		τ(C33-C35-N14-C18)(25), τ(C35-C33-N15-C31)(13), γ(H36-C35,N14,C33)(4)
49.	578	592			τ(N14-C31-N15-C33)(25), τ(N14-C35-C33-N15)(8), τ(C35-C33-N15-C31)(5)
50.	548	552	v(Cu–O)	metal-ligand vib.	v(Cu1–O5)(5), v(Cu1–O9)(4)
51.	460	475	τ(skel)	skeletal vib.	τ(C18-C19-C22-C25)(4)
52.	433	447	S(OPO)	phosphonate O–P–O	$\delta(O8-P3-O9)(11), \delta(O9-P3-O10)(4)$
53.	421	412	0(010)		δ(O8–P3–O10)(8)

^aScaling factors for the calculated harmonic frequencies: 0.946 for modes 1-16, 0.973 for modes 17-26, 1.000 for modes 27-53. ^bAbbreviations: br – broad, v – stretching, δ – in-plane bending, ρ_s – scissoring, ρ_w – wagging, ρ_t – twisting, γ – out-of-plane bending, τ – torsion. Subscripts: as – antisymmetric; s – symmetric. ^cVibrational bands assignment for the most characteristic functional groups based on the significant contribution in the potential energy distribution.^dThe PED values are listed if a contributor is among the top four and is \geq 4%.

	Calcd ^a	Exp.			
No.	v [cm ⁻¹]	v [cm ⁻¹]	General assignment ^{b,c}	Functional group	PED ^d
1.	3685		ν(О–Н)	phosphonate PO-H	v(O10–H11)(100)
2.	3536		ν(N–H)	imidazole	v(N15–H16)(99)
3.	3481	3461 br	ν(О–Н)	hydroxyl CO–H	v(O12–H13)(74)
4.	3365			nhaanhanata DO U	v(O5–H6)(69)
5.	3246		V(O-H)	phosphonate PO-H	v(O3–H4)(71)
6.	3218	2100			v(C31-H32)(71), v(C27-H28)(21), v(C29-H30)(6)
7.	3214	5100	ν(С–Н)	imidazole	v(C27–H28)(77), v(C31–H32)(20)
8.	3180	3166			v(C29–H30)(92), v(C31–H32)(7)
9.	3045				v(C19–H21)(57), v(C19–H22)(26), v(C23–H25)(4)
10.	3038	2054		CII	v(C23-H24)(56), v(C23-H25)(37), v(C19-H22)(4)
11.	3030	5034	$V_{as}(C-\Pi)$	-СП3	v(C19–H20)(46), v(C19–H22)(33), v(C19–H21)(14)
12.	3024				v(C23-H26)(43), v(C23-H25)(34), v(C23-H24)(15)
13.	2947	2050		CII	v(C19-H20)(44), v(C19-H22)(22), v(C19-H21)(21), v(C23-H26)(5)
14.	2941	2939	$V_{s}(C-H)$	$-CH_3$	v(C23-H26)(47), v(C23-H25)(21), v(C23-H24)(20), v(C19-H20)(5)
15.	1573	1580	ν(C=C), ν(C–N), δ(im)	imidazole	δ(H16–N15–C29)(43), δ(H16–N15–C27)(32), ν(C29–C31)(19), ν(C27–N14)(6)
16.	1538	1535	ν(C=N), ν(C–N), δ(im)	imidazole	δ(C29–N15–H16)(33), v(C27–N15)(26), v(C27–N14)(15), δ(N15–C29–H30)(5)
17.	1506	1492	S (CII)	CII	δ(H24–C23–H25)(34), δ(H21–C19–H22)(20), δ(H25–C23–H26)(9), δ(H20–C19–H21)(4)
18.	1483	1465	O _{as} (CH ₃)	-CH3	δ(H21–C19–H22)(32), δ(H24–C23–H25)(20), δ(H25–C23–H26)(13), δ(H20–C19–H21)(9)
19.	1446	1468	v(C=N), v(C-N), v(C=C)	imidazole	v(C29–N15)(23), v(C27–N15)(20), v(C29–C31)(18), v(C27–N14)(6)
20.	1410	1397	$\delta_{s}(CH_{3})$	-CH ₃	δ(H25-C23-H26)(21), δ(C18-C23-H25)(16), δ(C18-C23-H26)(10), δ(C18-C23-H24)(9)
21.	1386	1374	δ(COH)	hydroxyl C–O–H	δ(C17–O12–H13)(79)
22.	1360	1352	v(C–N)	imidazole	v(C31–N14)(21), v(C27–N14)(17), δ(C29–C31–H32)(7), v(C29–N15)(6)
23.	1334	1323	δ(POH)	phosphonate P-O-H	δ(P1–O3–H4)(39), δ(P1–O5–H6)(26)
24.	1311	1309	δ(im)	imidazole	δ(H16–N15–C29)(34), δ(H16–N15–C27)(33), δ(N14–C31–H32)(5), δ(C29–C31–H32)(4)
25.	1263		v(skel), v(C–N), v(C=N)	skeletal vib., imidazole	v(C18–N14)(16), v(C18–C23)(12), v(C31–N14)(8), v(C27–N15)(5)
26.	1243	1290-1225 br	ρ _r (CH ₃)	-CH ₃	ν(C17–C18)(24), δ(C18–C23–H26)(12), ν(C18–C19)(24), δ(C18–C23–H24)(9)
27.	1224		ν(skel), δ(im)	skeletal vib., imidazole	ν(C18–C19)(17), ν(C18–C23)(16), δ(N14–C27–H28)(8), δ(N15–C27–H28)(6)
28.	1189	1210	ρ _r (CH ₃)	-CH ₃	δ(C18–C19–H21)(12), δ(C18–C23–H25)(12), ν(C18–N14)(4)
29.	1179	1179	δ(POH)	phosphonate P-O-H	δ(P1–O5–H6)(44), δ(P1–O3–H4)(33)
30.	1141	1140	ν(P=O), δ(POH)	phosphonate P=O	ν(P7–O8)(43), δ(P7–O10–H11)(22), ν(P7–O9)(12)
31.	1098	1100	v(C–O)	hydroxyl C–OH	v(C12–O17)(49), v(C29–N15)(5)
32.	1093	1100	v(C–N)	imidazole	v(C29–N15)(29), v(C12–O17)(13), δ(N14–C31–H32)(9), δ(C29–C31–H32)(8)

 Table S12. Frequencies of theoretical and experimental IR bands and their vibrational assignments of ligand 1.

33.	1076	1079	v(P=O)	phosphonate P=O	v(P1–O2)(78)
34.	1028	1047			δ(P7–O10–H11)(67), v(P7–O8)(20), v(P7–O9)(6)
35.	1007	1005	$\delta_{ring}(im)$	imidazole	δ(C29–N15–H16)(47), δ(N15–C29–H30)(5), δ(N14–C31–C29)(5), δ(N14–C27–N15)(4)
36.	977	000	ρ _r (CH ₃)	-CH ₃	v(C17–C18)(23), δ(C18–C23–H24)(17), v(C18–C19)(15), δ(C18–C23–H26)(15)
37.	972	990			v(C18–C23)(21), δ(C18–C19–H22)(19), v(C17–C18)(17), δ(C18–C23–H25)(7)
38.	926	948	$\delta_{ring}(im)$	imidazole	δ(C27–N15–C29)(29), δ(H16–N15–C27)(24), δ(H16–N15–C29)(14), δ(N15–C29–C31)(10)
39.	923	896 br	v(P–O)	phosphonate P–O	v(P7–O9)(41), v(P7–O8)(22)
40.	826	832	γ(im)	imidazole	γ(H28–C27,N14,N15)(57), v(P1–C17)(11), v(P7–C17)(6), δ(P1–C17–C18)(5)
41.	749	747		phosphonate P–OH	v(P1–O3)(29), v(P1–O5)(21)
42.	692	683	V(F=0)		v(P7–O10)(53)
43.	633	646	τ(im)	imidazole	τ(N14-C27-N15-C29)(31), ν(C18-N14)(10), τ(C17-C18-N14-C27)(6)
44.	629	623			τ(N14-C31-C29-N15)(58), τ(N14-C27-N15-C29)(21), τ(C31-C29-N15-C27)(13)
15	570	C 47			τ(N14-C27-N15-C29)(47), τ(N14-C31-C29-N15)(16), τ(C31-C29-N15-C27)(10),
43.	378	547			τ (P1-C17-O12-H13)(5)
46.	522	500	δ(OPO), δ(skel)	phosphonate O–P–O skeletal vib.	τ(H11–O10–P7–O8)(10), δ(O8–P7–O9)(8), δ(O9–P7–C17)(6), δ(O10–P7–C17)(4)
47.	468	470			δ(C19–C18–C23)(10), δ(P1–C17–O12)(8), δ(O2–P1–C17)(6), τ(H6–O5–P1–O2)(5)
48.	446	443			δ(N14-C18-C19)(15), δ(N14-C18-C23)(9) δ(C18-N14-C31)(5), δ(C18-N14-C27)(5)
49.	401	406			τ(Η11–Ο10–Ρ7–Ο8)(9), δ(Ο8–Ρ7–Ο9)(9), δ(Ο9–Ρ7–Ο10)(8), δ(Ν14–C18–C23)(6)

^aScaling factors for the calculated harmonic frequencies: 0.961 for modes 1-14, 0.976 for modes 15-22, 1.000 for modes 23-49. ^bAbbreviations: br – broad, v – stretching, δ – in-plane bending, ρ_r – rocking, γ – out-of-plane bending, τ – torsion. Subscripts: as – antisymmetric; s – symmetric. ^cVibrational bands assignment for the most characteristic functional groups based on the significant contribution in the potential energy distribution.^dThe PED values are listed if a contributor is among the top four and is \geq 4%.

	Calcd ^a	Exp.	_		
No.	v [cm ⁻¹]	ν [cm ⁻¹]	General assignment ^{b,c}	Functional group	PED ^d
1.	3651		v(O–H)	phosphonate PO-H	v(O10–H11)(100)
2.	3514	3650-3185 br	v(N–H)	imidazole	v(N15–H16)(99)
3.	3616		v(O–H)	hydroxyl CO–H	v(O12-H13)(70)
4.	3183	3175			v(C28–H29)(75), v(C32–H33)(16), v(C30–H31)(6)
5.	3178	5175	v(C–H)	imidazole	v(C32–H33)(57), v(C28–H29)(23), v(C30–H31)(17)
6.	3157	3150			v(C30–H31)(75), v(C32–H33)(24)
7.	3046		v _{as} (C–H)	-CH2-	v(C25–H26)(49), v(C22–H24)(19), v(C25–H27)(9), v(C22–H23)(7)
8.	3047	3058	v(O–H)	phosphonate PO-H	v(O5–H6)(65), v(O3–H4)(6)
9.	3040	5058	и (С H)	СЧ	v(C19–H21)(53), v(C25–H26)(24), v(C19–H20)(11), v(C22–H24)(4)
10.	3028			-0112-	v(C22–H24)(46), v(C19–H21)(22), v(C22–H23)(16), v(C25–H26)(12)
11.	2969		v _s (C–H)	-CH2-	v(C22–H23)(66), v(C22–H24)(27)
12.	2963	2071	v(O–H)	phosphonate PO-H	v(O3–H4)(71), v(O5–H6)(6)
13.	2953	2971	ν _s (C–H)	-CH-	v(C25-H27)(46), v(C19-H20)(32), v(C25-H26)(7), v(C19-H21)(5)
14.	2951			-Cn ₂ -	v(C19–H20)(49), v(C25–H27)(34), v(C19–H21)(9), v(C25–H26)(5)
15.	1572	1577	ν(C=C), ν(C–N), δ(im)	imidazole	δ(H16–N15–C30)(33), δ(H16–N15–C28)(24), ν(C30–C32)(17), ν(C28–N14)(5)
16.	1537	1535	ν (C=N), ν (C–N), δ (im)	imidazole	δ(H16–N15–C30)(28), ν(C28–N15)(23), ν(C28–N14)(14), δ(N15–C30–H31)(5)
17.	1477	1473	\circ (CH ₂)	СЧ	δ(H23-C22-H24)(22), δ(H20-C19-H21)(16), δ(H26-C25-H27)(12)
18.	1450	1436	p _s (en ₂)	-0112-	δ(H20–C19–H21)(32), δ(H26–C25–H27)(18), δ(C18–C19–H21)(5), δ(C18–C19–H20)(5)
19.	1444	1426	v(C=N), v(C-N), v(C=C)	imidazole	v(C30–N15)(23), v(C28–N15)(22), v(C30–C32)(18), v(C28–N14)(6)
20.	1373	1366	δ(COH), δ(POH)	hydroxyl C–O–H, phosphonate P–O–H	δ(C17–O12–H13)(28), δ(P1–O3–H4)(20), δ(P1–O5–H6)(16)
21.	1356		v(C–N)	imidazole	v(C32–N14)(22), v(C28–N14)(19), δ(H16–N15–C28)(7), v(C30–N15)(7)
22.	1350	1350	δ(COH), δ(POH)	hydroxyl C–O–H, phosphonate P–O–H	δ(C17–O12–H13)(42), δ(P1–O3–H4)(26), ν(C17–C18)(8)
23.	1316	1212	δ(im)	imidazole	δ(H16–N15–C30)(52), δ(C30–C32–H33)(7), δ(N14–C28–H29)(7), δ(H31–C30–C32)(5)
24.	1308	1312	$\rho_{\rm w}({\rm CH_2})$		δ(C22–C25–H26)(18), δ(C18–C25–H26)(16), δ(C22–C25–H27)(9), δ(C18–C19–H21)(6)
25.	1288	1280	$\rho_t(CH_2)$	CH ₂	δ(C18–C25–H27)(12), δ(C22–C25–H27)(10), δ(C18–C19–H20)(7), ν(C18–N14)(7)
26.	1280	1200	$\rho_w(CH_2)$		δ(H24–C22–C25)(18), δ(C19–C22–H24)(18), δ(H23–C22–C25)(10), δ(C19–C22–H23)(10)
27.	1263	1261	v(C–N)	imidazole	v(C18–N14)(15), v(C32–N14)(13), δ(H20–C19–C22)(6), v(C28–N15)(5)
28.	1227	1235	$\rho_t(CH_2)$	-CH ₂ -	δ(H23-C22-C25)(12), δ(H21-C19-C22)(11), δ(C19-C22-H23)(10), δ(C22-C25-H26)(8)
29.	1187	1191	v(skel)	skeletal vib.	v(C17–C18)(26), δ(H21–C19–C22)(10), v(C17–O12)(5), δ(C22–C25–H26)(5)
30.	1119	1129	ν(P=O), δ(POH)	phosphonate P=O	δ(P7–O10–H11)(49), v(P7–O8)(14), v(P7–O9)(8)
31.	1087	1097	v(C–O), v(C–N)	hydroxyl C–OH, imidazole	ν(C12–O17)(26), ν(C30–N15)(16), δ(C18–C19–H20)(5), δ(C18–C19–H21)(4)

 Table S13. Frequencies of theoretical and experimental IR bands and their vibrational assignments of ligand 3.

32.	1080	1057	v(P=O)	phosphonate P=O	v(P1–O2)(69)
33.	1037	1020	ν(P=O), δ(POH)	phosphonate P=O	δ(P7–O10–H11)(36), ν(P7–O8)(22), ν(P7–O9)(15)
34.	997	987	$\delta_{ring}(im)$	imidazole	δ(H16–N15–C30)(38), δ(N14–C32–C30)(5), ν(C18–N14)(5), δ(N15–C30–H31)(5)
35.	975	052	v(C–C)	-CH2-CH2-	v(C22–C25)(39), v(C17–C18)(12)
36.	967	932			v(C19–C22)(39), v(C17–C18)(10)
37.	942	934	δ(skel)	skeletal vib.	ν(C17–C18)(9), δ(N14–C18–C17)(6), δ(P1–C17–C18)(6), δ(H16–N15–C30)(6)
38.	917	910	v(P–O)	phosphonate P-O	v(P7–O9)(27), v(P7–O8)(23), v(P7–O10)(12)
39.	858	869	v(P–O)	phosphonate P-OH	v(P1–O5)(19), v(P1–O3)(12), γ(H29–C28,N14,N15)(8), δ(N14–C18–C17)(4)
40.	848	851	(im)	imidazole	γ(H33–C32,N14,C30)(51), γ(H31–C30,N15,C32)(26), τ(N14–C32–C30–N15)(9)
41.	834	832	γ(IIII)		γ(H29–C28,N14,N15)(59), τ(N14–C28–N15–C30)(5)
42.	759	757	v(P–O)	phosphonate P–OH	v(P1-O3)(22), v(P7-O10)(22), v(P1-O5)(18)
43.	722	725			v(P7–O10)(32), y(H31–C30,N15,C32)(30), y(H33–C32,N14,C30)(14)
44.	682	677	-(im)	imidazole	τ(C17-C18-N14-C28)(25), τ(N14-C32-C30-N15)(16), τ(N14-C28-N15-C30)(10)
45.	630	637	t(IIII)		τ(N14-C28-N15-C30)(38), τ(P1-C17-O12-H13)(21), τ(C17-C18-N14-C28)(7)
46.	612	623	τ(skel)	skeletal vib.	τ(P1-C17-O12-H13)(64), τ(N14-C32-C30-N15)(5)
47.	577	566	τ(im)	imidazole	τ(N14-C28-N15-C30)(55), τ(N14-C32-C30-N15)(20), τ(C32-C30-N15-C28)(12)
48.	544	552	δ(skel)	skeletal vib.	δ(C17-C18-C25)(13), δ(P1-C17-C18)(8), τ(N14-C18-C17-P1)(8), δ(P7-C17-C18)(7)
49.	516	511			τ (N14–C18–C17–P1)(6), δ (O12–C17–C18)(5), δ (O10–P7–C17)(4), δ (O8–P7–C17)(4)
50.	476	478	S(OPO) S(stral)	phosphonate O-P-O	δ(O9-P7-O10)(8), ν(C17-P1)(7), δ(O2-P1-C17)(5), δ(O8-P7-C17)(5)
51.	444	437	o(UPU), o(skel)	skeletal vib.	δ(O2–P1–O5)(6), δ(O10–P7–C17)(4), δ(O3–P1–C17)(4)

^aScaling factors for the calculated harmonic frequencies: 0.955 for modes 1-14, 0.975 for modes 15-22, 1.000 for modes 23-51. ^bAbbreviations: br – broad, v – stretching, δ – in-plane bending, ρ_s – scissoring, ρ_w – wagging, ρ_t – twisting, γ – out-of-plane bending, τ – torsion. Subscripts: as – antisymmetric; s – symmetric. ^cVibrational bands assignment for the most characteristic functional groups based on the significant contribution in the potential energy distribution.^dThe PED values are listed if a contributor is among the top four and is \geq 4%.

	Calcd ^a	Exp.			
No.	v [cm ⁻¹]	ν [cm ⁻¹]	General assignment ^{b,c}	Functional group	PED ^d
1.	3641				v(O8–H9)(99)
2.	3629	3650 3225 br	v(O-H)	phosphonate PO-H	v(O10–H11)(80)
3.	3604	5050-5225 01			v(O4–H5)(76)
4.	3507		v(N–H)	imidazole	v(N15–H16)(99)
5.	3200	3197			v(C35–H36)(93), v(C33–H34)(4)
6.	3175	3178	v(C-H)	imidazole	v(C31–H32)(97)
7.	3156	3155			v(C33–H34)(90), v(C35–H36)(4), δ(C33–C35–H36)(4)
8.	3011	3014			v(C28–H29)(63), v(C28–H30)(27)
9.	3003	3008	$v_{as}(C-H)$		v(C19–H21)(50), v(C19–H20)(37), v(C28–H29)(5)
10.	2986	2975			v(C25–H27)(36), v(C22–H23)(30), v(C25–H26)(12), v(C22–H24)(7)
11.	2968	2962	$v_{as}/v_{s}(C-H)$	CH ₂	v(C22–H23)(43), v(C25–H27)(23), v(C28–H30)(9), v(C28–H29)(8)
12.	2951	2941			v(C19–H20)(48), v(C19–H21)(43)
13.	2933	2918	$v_{s}(C-H)$		v(C25–H26)(54), v(C25–H27)(22), v(C22–H24)(15), v(C22–H23)(4)
14.	2919	2908			v(C22–H24)(64), v(C25–H26)(18), v(C22–H23)(13), v(C25–H27)(3)
15.	2564	n.o.	v(O-H)	hydroxyl CO-H	v(O12–H13)(89)
16.	1581	1578	$\delta(im), v(C=C)$	imidazole	δ(N14–C35–H36)(36), v(C33–C35)(13), δ(H16–N15–C33)(13), δ(H16–N15–C31)(8)
17.	1544	1524	δ(COH)	hydroxyl C–O–H	δ(C17–O12–H13)(90)
18.	1540	1334	$v(C-N), v(C=N), \delta(im)$	imidazole	v(C31–N15)(42), δ(H16–N15–C33)(16), v(C31–N14)(15), δ(N15–C33–H34)(13)
19.	1507	1509			δ(H29–C28–H30)(21), δ(H20–C19–H21)(20), δ(H26–C25–H27)(13), δ(H23–C22–H24)(7)
20.	1488	1479	$\rho_{\rm s}({\rm CH}_2)$	-CH ₂ -	δ(H20–C19–H21)(31), δ(H26–C25–H27)(27), δ(H23–C22–H24)(5), δ(C18–C19–H21)(5)
21.	1486	14/0			δ(H29–C28–H30)(43), δ(H23–C22–H24)(20), δ(H20–C19–H21)(8)
22.	1447	1460	v(C–N), v(C=C), v(C=N)	imidazolo	v(C33–N15)(31), v(C31–N15)(26), v(C33–C35)(23), v(C31–N14)(5)
23.	1376	1256	v(C–N)	IIIIuazoie	v(C35–N14)(27), v(C31–N14)(13), δ(H34–C33–C35)(11), δ(C33–C35–H36)(8)
24.	1355	1550			δ(H21-C19-C22)(14), δ(C18-C19-H21)(12), δ(C25-C28-H30)(9), δ(C18-C28-H30)(8)
25.	1317	1317	$\rho_{w}(C\Pi_{2})$		δ(H26-C25-C28)(16), δ(C22-C25-H26)(12), δ(C25-C28-H30)(7), δ(C22-C25-H27)(6)
26.	1270	1283	$\rho_{\rm w}/\rho_{\rm t}({\rm CH_2})$] -CH ₂ -	δ(C18–C28–H29)(10), δ(C33–C35–H36)(9), ν(C18–N14)(7), δ(H24–C22–C25)(5)
27.	1254	1246			δ(C22–C25–H27)(10), δ(H23–C22–C25)(9), ν(C35–N14)(8), δ(C22–C25–H26)(8)
28.	1225	1220	$\rho_t(C\Pi_2)$		δ(C19–C22–H23)(11), v(C17–C18)(10), δ(H27–C25–C28)(8), δ(C19–C22–H24)(6)
29.	1172	1199	δ(im)	imidazole	δ(H16–N15–C31)(26), δ(N15–C31–H32)(11), δ(N14–C31–H32)(9)
30.	1139	1146	ν(P=O), δ(POH)	phosphonate P=O	v(P6–O7)(31), δ(P6–O8–H9)(19), v(C17–C18)(15), δ(P6–O10–H11)(12)
31.	1129	1111	δ(im)	imidazolo	δ(C33-C35-H36)(38), δ(N14-C35-H36)(32), δ(H34-C33-C35)(10), δ(N15-C33-H34)(9)
32.	1090	1094	v(C-N)	mindazoie	ν(C33–N15)(51), δ(C31–N14–C35)(15), ν(C18–N14)(8)

 Table S14. Frequencies of theoretical and experimental IR bands and their vibrational assignments of of ligand 4.

33.	1075	1063	ν(P=O), δ(POH)	phosphonate P=O	ν(P1-O3)(32), ν(P1-O2)(15), δ(P1-O4-H5)(14), ν(C17-O12)(12)
34.	1065		v(C-O)	hydroxyl C–OH	v(C17–O12)(19), v(C22–C25)(13), v(C25–C28)(9), v(P1–O3)(7)
35.	1048	1042	ν(P=O), δ(POH)	phosphonate P=O	v(P6–O7)(17), δ(P1–O4–H5)(12), δ(P6–O8–H9)(9), v(P1–O3)(9)
36.	1041	1042	v(C–O)	hydroxyl C–OH	v(C17–O12)(24), δ(C33–C35–H36)(12), v(C19–C22)(9), v(C22–C25)(9)
37.	1021	1010	S (im)	imidazole	δ(H16–N15–C33)(14), δ(H34–C33–N15)(11), ν(C18–N14)(7), δ(C31–N14–C35)(7)
38.	979	1019	O _{ring} (IIII)		δ(N14-C35-C33)(36), δ(C31-N14-C35)(8), δ(H16-N15-C33)(6), δ(N14-C31-N15)(4)
39.	966	960	v(C–C)	CH2CH2	v(C25-C28)(24), v(C19-C22)(5), v(C18-C28)(4)
40.	942	937	$\delta(\text{skel}), v(\text{skel})$	skeletal vib.	δ(N14–C18–C17)(7), v(C18–C19)(7), δ(P1–C17–C18)(6), v(P6–C17)(6)
41.	910	901 br	v(P–O)	phosphonate P-O	v(P1-O2)(55), v(P1-O3)(13), v(P1-O4)(12)
42.	843	824	γ(im)	imidazole	γ(H34–C33,N15,C35)(47), τ(N14–C35–C33–N15)(18)
43.	822	034			γ(H32–C31,N14,N15)(61), τ(N14–C31–N15–C33)(13)
44.	740	759 hr	v(B , O)	nhosnhonata D. OU	ν(P1–O4)(40), ν(P1–O2)(8), δ(O12–C17–C18)(5)
45.	724	/38 01	V(F-O)	phosphonate r-On	v(P6–O10)(33), v(P6–O8)(19), v(P1–O4)(8)
46.	645	643	$\tau(im), \delta_{ring}(cpt)$	imidazole, cyclopent	τ (N14–C31–N15–C33)(20), δ (C22–C25–C28)(9), δ (C19–C22–C25)(9), δ (C19–C22–H24)(5)
47.	632	624	$\tau(im)$	inidanala	τ(N14-C35-C33-N15)(63), τ(C35-C33-N15-C31)(8), τ(N14-C31-N15-C33)(5)
48.	582	588		IIIIdazole	τ(N14-C31-N15-C33)(49), τ(N14-C35-C33-N15)(21), τ(C35-C33-N15-C31)(10)
49.	492	483			δ(O7–P6–O10)(11), δ(O8–P6–O10)(11), δ(O10–P6–C17)(6), ν(P6–C17)(5)
50.	436	454	δ(OPO)	phosphonate O-P-O	δ(O2–P1–O3)(22), δ(O7–P6–O10)(9), δ(O8–P6–O10)(6), δ(O10–P6–C17)(4)
51.	412	429			δ(O3–P1–O4)(14), δ(O12–C17–C18)(8), δ(O7–P6–O10)(5), δ(O7–P6–O8)(4)

^aScaling factors for the calculated harmonic frequencies: 0.953 for modes 1-15, 0.984 for modes 16-25, 1.000 for modes 26-51. ^bAbbreviations: br – broad, v – stretching, δ – in-plane bending, ρ_s – scissoring, ρ_w – wagging, ρ_t – twisting, γ – out-of-plane bending, τ – torsion. Subscripts: as – antisymmetric; s – symmetric. ^cVibrational bands assignment for the most characteristic functional groups based on the significant contribution in the potential energy distribution.^dThe PED values are listed if a contributor is among the top four and is \geq 4%.

Figure S21. TG curves recorded for 1a, 3a and 4a.

Figure S22. TG-DTA plot for the complex 1a.

Figure S23. DSC plot for the complex 1a.

Figure S24. TG-DTA plot for the complex 3a.

Figure S25. DSC plot for the complex 3a.

Figure S26. TG-DTA plot for the complex 4a.

Figure S27. DSC plot for the complex 4a.

Figure S28. IR spectra of (a) crystalline complex 1a and (b) solid obtained by heating sample of the complex up to 600 °C.

Figure S29. IR spectra of (a) crystalline complex 3a and (b) solid obtained by heating sample of the complex up to 600 °C.

Figure S30. IR spectra of (a) crystalline complex 4a and (b) solid obtained by heating sample of the complex up to 600 °C.