

Figure. S1 (a) TEM images of the α -Fe₂O₃ particles and (b) the high resolution TEM image of the edge of the sample.

Figure. S2 XRD patterns of the products prepared in different temperature

Figure. S3 XRD patterns of the products synthesized by NH_4Cl , Na_2CO_3 and NH_4HCO_3 respectively.

Figure. S4 XRD pattern of the products synthesized under the condition in which urea and FeCl₃ were in half concentration.

Figure. S5 XRD patterns of the samples synthesized by (a) (NH₄)₂SO₄, (b) NH₄F, (c) NH₄H₂PO₄, (d) NH₄VO₃.

Reactants	Time (h)	Temperature (°C)	Product	Morphology
2mmol FeCl3+2mmol urea	24	120	β-FeOOH+α- Fe ₂ O ₃	Nanorods+double hexagonal pyramid particles
	24	140	α-Fe ₂ O ₃	Well-defined double hexagonal pyramid particles
	24	170	α-Fe ₂ O ₃	Dull double hexagonal pyramid particles
	1	140	β-FeOOH	Nanorods
	6	140	β-FeOOH+α- Fe ₂ O ₃	Irregular particles+nanorods
	12	140	β-FeOOH+α- Fe ₂ O ₃	Nanorods+double hexagonal pyramid particles
	48	140	α-Fe ₂ O ₃	double hexagonal pyramid particles with dull edge
	72	140	α-Fe ₂ O ₃	double hexagonal pyramid particles with many defects
2mmol FeCl ₃ +2mmol NH ₄ Cl				Amorphous particles
2mmol FeCl ₃ +2mmol NH ₄ HCO ₃	24	140	α-Fe ₂ O ₃	Double hexagonal pyramid particles
2mmol FeCl ₃ +2mmol Na ₂ CO ₃				Rhombohedral particles
1mmol FeCl ₃ +1mmol urea				Double hexagonal pyramid particles with plenty holes

Table. S1 Summary of the reaction products and morphology of the Fe_2O_3 particles in different parameters.