The diffuse reflectance spectrum of the WO₃ nanorods was recorded. The diffuse reflectance measurements were converted into the equivalent absorption coefficient using the Kubelka-Munk method $F(R) = (1 - R)^2/2R = \alpha$ in which R is reflectance, α is absorption coefficient. The WO₃ nanorod sample displayed a strong absorption edge at around 410 nm in Fig. S1(a). The optical bandgap value of the WO₃ nanorods was calculated according to the equation: $(\alpha h \nu) = A(h\nu - Eg)^n$ in which *h* is Planck's constant, ν is the frequency of light, n is 1/2, and E_g is the bandgap value. The estimated Eg is approximately 3.0 eV for the WO₃ nanorods (Fig. S1(b)).

Fig. S1. (a) Optical absorbance spectrum of the WO₃ nanorods grown on the R6-WO₃ seed layer. (b) (F(R)hv)^{1/2} vs. photon energy plot.