Supporting information

Growth Behavior of Au/Cu_{2-x}S Hybrids and Their Plasmon-enhanced Dual-functional Catalytic Activity

Liang Ma^a, You-Long Chen ^a, Xin Yang ^a, Hai-Xia Li ^a, Si-Jing Ding ^b, Hua-Yi Hou ^a, Lun Xiong ^a, Ping-Li Qin ^a, Xiang-Bai Chen ^a

^a Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.

^b School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, Wuhan, P. R. China.

Figure S1. XRD pattern of half-shell Au/Cu_{2-x}S hybrids.

Figure S2. Fenton-like catalytic activity of half-shell $Au/Cu_{2-x}S$ tested by changing the concentration of MB (a) and H_2O_2 (b).

Figure S3. Schematic illustration of energy band diagram of $Au/Cu_{2-x}S$ hybrids.

Figure S4. High magnification TEM image of half-shell $Au/Cu_{2-x}S$ hybrids.

Figure S5. Extinction spectra of core-shell $Au/Cu_{2-x}S$ hybrids synthesized with cupric nitrate and cupric acetate.

Figure S6. Extinction spectra of core-shell $Au/Cu_{2-x}S$ and physical mixture of Au and $Cu_{2-x}S$.

Figure S7. Low-magnification TEM image of Au/Cu_{2-x}S nanorods generated after 2 hrs of reaction