Supporting Information

Structural Diversity, Magnetic Properties, or Luminescent Sensing Based Ni(II)/Zn(II) Coordination Polymers of the semirigid ligand of

3,3'-((5-carboxy-1,3-phenylene)bis(oxy))dibenzate

Dong-Dong Yang^a, Li-Ping Lu^{*a}, Miao-Li Zhu^{*a, b}

^a Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering

of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People' s Republic of China.

luliping@sxu.edu.cn. b Key Laboratory of Materials for Energy Conversion and Storage of Shanxi

Province; Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.

miaoli@sxu.edu.cn

Contents

Fig. S1 ESI mass spectra of H₃cpboda ligand

Fig. S2 The IR spectra of H₃cpboda ligand and complexes 1-4

Fig. S3 The thermal curves of complexes 1-4

Fig. S4 The solid-state emission spectra of 2 and 4 as well as H₃cpboda at room temperature

Fig. S5 The luminescence intensities of complexes 2 and 4, which were dispersed in the aqueous solution of different anions.

Fig S6 Luminescence responses of **2** and **4** toward different concentrations of $Cr_2O_7^{2-/} CrO_4^{2-}$ in water, and Stern–Volmer plot of I_0/I versus $Cr_2O_7^{2-/} CrO_4^{2-}$ concentration in an aqueous suspension of **2** and **4**.

Fig. S7 Linear region of fluorescence intensity suspensions in water upon incremental addition of $Cr_2O_7^{2-}/CrO_4^{2-}$ in complexes 2 and 4.

Fig. S8 (a) Interference study of 2 and 4 for $Cr_2O_7^{2-7}/CrO_4^{2-7}$ anions in the presence of different anions.

Fig. S9 The luminescence intensity of complexes 2 and 4 for the recognition of $Cr_2O_7^{2-}/CrO_4^{2-}$ in 2 and 4, CrO_4^{2-} after five recycling processes.

Fig. S10 The PXRD patterns of simulated complexes 2 and 4, the PXRD patterns of five cycle tests of 2 and 4 sense $Cr_2O_7^{2-}$ and CrO_4^{2-} anions.

Fig.S11 Liquid UV-vis spectra of complexes 2 and 4, $Cr_2O_7^{2-}$ and CrO_4^{2-} in the aqueous solution.

Fig. S12 Liquid UV-vis spectra of complexes 2, 4 and anions in the aqueous solution

Fig. S13 HOMO and LUMO energies (eV) for the complex 4, Cr₂O₇²⁻ and CrO₄²⁻

Table S1 Crystal data and structure refinement for complexes 1-4

Table S2 Comparison of various CPs sensors for the detection of Cr(VI).

Tables S3. Selected bond lengths [Å] and angles [°] for complexes 1-4.

Tables S4. Hydrogen bonds in crystal packing [Å, °] of complexes 1, 2 and 4.

Table S5 LOD calculations for Cr₂O₇²⁻ and CrO₄²⁻

(e)

Fig. S2 The IR spectra of H_3 cpboda ligand and complexes 1-4

Fig. S3 The thermal curves of complexes 1-4.

Fig. S4 The solid-state emission spectra of ${\bf 2}$ and ${\bf 4}$ as well as ${\rm H}_3{\rm cpboda}$ at room temperature

Fig. S5 The luminescence intensities of complexes 2 (a) and (b), 4 (c) and (d), which were dispersed in the aqueous solution of different anions.

Fig S6 (a) Luminescence responses of **2** (2.00 mg dispersed in 2.00 mL of water) toward different concentrations of $Cr_2O_7^{2-}$ in water, (b) Luminescence responses of **2** toward different concentrations of CrO_4^{2-} in water, (e) Luminescence responses of **4** (2.00 mg dispersed in 2.00 mL of water) toward different concentrations of $Cr_2O_7^{2-}$ in water, luminescence responses of **4** toward different concentrations of CrO_4^{2-} in water, (b) Stern–Volmer plot of I_0/I versus $Cr_2O_7^{2-}$ concentration in an aqueous suspension of **2**. (d) Stern–Volmer plot of I_0/I versus CrO_4^{2-} concentration in an aqueous suspension of **2**. (f) Stern–Volmer plot of I_0/I versus CrO_7^{2-} concentration in an aqueous suspension of **4**. (h) Stern–Volmer plot of I_0/I versus CrO_4^{2-} concentration in an aqueous suspension of **4**.

Fig. S7 Linear region of fluorescence intensity suspensions in water upon incremental addition of $Cr_2O_7^{2-}$ (a) and

 CrO_4^{2-} (b) in complex **2**, $Cr_2O_7^{2-}$ (c) and CrO_4^{2-} (d) in complex **4**.

Fig. S8 (a) Interference study of **2** for $Cr_2O_7^{2-}$ anions in the presence of different anions. (b) Interference study of **2** for CrO_4^{2-} anions in the presence of different anions. (c) Interference study of **4** for $Cr_2O_7^{2-}$ anions in the presence of different anions. (d) Interference study of **4** for CrO_4^{2-} anions in the presence of different anions.

Fig. S9 The luminescence intensity of complexes 2 and 4 for the recognition of $Cr_2O_7^{2-}$ (a) in 2, (c) in 4, CrO_4^{2-} (b) in 2, (d) in 4, after five recycling processes.

Fig. S10 The PXRD patterns of simulated complexes **2** and **4**, the PXRD patterns of five cycle tests of **2** and **4** sense $Cr_2O_7^{2-}$ and CrO_4^{2-} anions.

Fig.S11 Liquid UV-vis spectra of complexes 2 and 4, $Cr_2O_7^{2-}$ and CrO_4^{2-} in the aqueous solution.

Fig. S12 Liquid UV-vis spectra of complexes 2, 4 and anions in the aqueous solution

Fig. S13 HOMO and LUMO energies (eV) for the complex 4, $Cr_2O_7^{2-}$ and CrO_4^{2-} .

	1	2	3	4
CCDC	1955193	1955196	1955195	1955194
Formula	C ₅₄ H ₅₈ N ₄ Ni ₃ O ₂₄ [+solvent=(C ₅₄ H ₅₈ N ₄ Zn ₃ O ₂₄ [+solvent=($C_{105}H_{83}N_{21}Ni_{3}O_{19}$	$C_{62}H_{44}N_4O_{18}Zn_2$
	$C_3H_7NO)\cdot 2(HCOOH)\cdot 2(H_2O)$	C_3H_7NO)·3(HCOOH)·3(H ₂ O		
)])]		
M _r	1524.35	1608.37	2119.05	1263.75
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
space group	C2/c	C2/c		
Temperature(K)	296 (2)	300(2)	296 (2)	300(2)
Size	0.25×0.20×0.15	0.20×0.20×0.10	0.20×0.15×0.10	0.25×0.25×0.20
a (Å)	26.838 (8)	26.833 (3)	13.4660 (6)	10.0734 (3)
<i>b</i> (Å)	16.004 (4)	16.3490 (18)	13.6070 (6)	10.7439 (3)
c (Å)	19.922 (6)	20.321 (2)	13.7158 (6)	13.9706 (4)
α(°)	90	90	97.812 (2)	80.340 (1)
β (°)	128.187 (6)	130.554 (3)	103.166 (2)	79.996 (1)
γ(°)	90	90	94.058 (2)	64.717 (1)
<i>V</i> (ų)	6727 (4)	6773.3 (13)	2410.88 (19)	1338.92 (7)
Ζ	4	4	1	1
D _x /Mg m ⁻³	1.505	1.577	1.460	1.567
μ (mm ⁻¹)	0.92	1.15	0.66	0.98
<i>R</i> _{int}	0.068	0.038	0.035	0.039
GOF	1.02	1.04	1.00	1.07

Table S1 Crystal data and structure refinement for complexes 1 – 4

F ₀₀₀	3176.0	3336.0	1096.0	648.0
$R_1[l>2\sigma(l)]$	0.057	0.076	0.057	0.049
$wR_2[I > 2\sigma(I)]$	0.154	0.276	0.150	0.104
Δρ _{max} (eÅ ⁻³)	0.52	1.65	0.73	0.55
Δρ _{min} (eÅ ⁻³)	-0.40	-0.185	-0.93	-0.66

Table S2 Comparison of various CPs sensors for the detection of Cr(VI).

			Quenching constant	Detection Limits (LOD,		
	CPs-based fluorescent Materials	Analyte	(K _{SV} , M ⁻¹)	μΜ)	Media	Ref.
1	$\{[Zn_2(TPOM)(NH_2\text{-}BDC)_2]\cdot 4H_2O\}_n$	(Cr ₂ O ₇ ² -/CrO ₄ ²⁻)	7.59×10 ³ , 4.45×10 ³	3.9/4.8	DMF	<i>S1</i>
	$[Zn(btz)]_n$	(Cr ₂ O ₇ ²⁻ /CrO ₄ ²⁻)	4.23×10 ³ , 3.19×10 ³	2/10	water	
2	$[Zn(ttz)H_2O]_n$	(Cr ₂ O ₇ ²⁻ /CrO ₄ ²⁻)	2.19×10 ³ , 2.35×10 ³	2/20	water	<i>S2</i>
3	[Zn ₂ (TPOM)(NH ₂ -BDC) ₂]·4H ₂ O	$(Cr_2O_7^{2-}/CrO_4^{2-})$	7.59×10 ³ , 4.45×10 ³	3.9/4.8	DMF	<i>S3</i>
4	Eu(CBIP)(HCOO)(H ₂ O)] _n	$(Cr_2O_7^{2-}/CrO_4^{2-})$	2.76×10 ³ , 1.54×10 ³	1.0/1.2	water	<i>S4</i>
	$[Cd(\mu_3-Hcpboda)(1,4-bib)]_n$	$(Cr_2O_7^{2-}/CrO_4^{2-})$	1.62×10 ⁴ , 7.61×10 ³	2.29/3.91	water	
5	${[Cd_3(\mu_4-cpboda)_2(\mu_{1,1}-$	$(Cr_2O_7^{2-}/CrO_4^{2-})$	1.38×10 ⁴ , 1.43×10 ⁴	4.27/4.4	water	<i>S5</i>
	$OH_2)_2(phen)_2]\cdot 2DMF\cdot 1.5H_2O_n$					
6	[Cd(4-tkpvb)(5-tert-BIPA)] _n	$(Cr_2O_7^{2-}/CrO_4^{2-})$	2.5×10 ⁴ , 4.78×10 ⁴	0.12/0.08	water	<i>S6</i>
7	$[Zn(\mu_3-Hcpota)(phen)]_n \cdot nH_2 O$	$(Cr_2O_7^{2-}/CrO_4^{2-})$	1×10^4 , 3.51×10^3	3.62/8.06	water	S 7
	$[Zn(IPA)(L)]_n$	$(Cr_2O_7^{2-}/CrO_4^{2-})$	1.37×10 ³ , 1.0×10 ³	12.0/18.3	water	
8	$[Cd(IPA)(L)]_n$	$(Cr_2O_7^{2-}/CrO_4^{2-})$	2.91×10 ³ , 1.20×10 ³	2.26/2.52	water	S 8
	${[Zn_3(\mu_4-cpboda)_2(\mu_2-$	$(Cr_2O_7^{2-}/CrO_4^{2-})$	1.14×10 ⁴ , 4.0×10 ³	1.73/3.12	water	
9	$H_2O)_2(DMF)_2(H_2O)_2]\cdot 3DMF\cdot 4HCOOH$					This
	} <i>n</i>					work
	[Zn(Hcpboda)(2,2bipy)(H ₂ O)] _n	(Cr ₂ O ₇ ²⁻ /CrO ₄ ²⁻)	1.40×10 ⁴ , 3.83×10 ³	3.04/5.33	water	

Tables S3. Selected bond lengths [Å] and angles [°] for complexes 1-4.

Complex 1					
Nil—O6	2.023 (3)	Ni2—O5	2.025 (3)		
Ni1—O6 ⁱ	2.023 (3)	Ni2—O1	2.029 (4)		
Nil—O2	2.033 (3)	Ni2—O10	2.053 (4)		
Ni1—O2 ⁱ	2.033 (3)	Ni2—O11	2.046 (3)		
Ni1—09	2.095 (3)	Ni2—O9	2.072 (3)		
Ni1—O9 ⁱ	2.095 (3)	Ni2—07	2.079 (3)		
06—Ni1—O6 ⁱ	180.0	O2—Ni1—O9 ⁱ	88.45 (13)		
O6—Ni1—O2	90.98 (13)	O2 ⁱ —Ni1—O9 ⁱ	91.55 (13)		

O6 ⁱ —Ni1—O2	89.02 (13)	09—Ni1—O9 ⁱ	180.0
O6—Ni1—O2 ⁱ	89.02 (13)	O5—Ni2—O1	94.51 (15)
O6 ⁱ —Ni1—O2 ⁱ	90.98 (13)	O5—Ni2—O10	89.34 (17)
O2—Ni1—O2 ⁱ	180.00 (9)	O1—Ni2—O10	173.23 (15)
06—Ni1—O9	95.04 (13)	O5—Ni2—O11	85.40 (13)
O6 ⁱ —Ni1—O9	84.96 (13)	01—Ni2—O11	88.44 (13)
02—Ni1—O9	91.55 (13)	O10—Ni2—O11	86.32 (15)
02 ⁱ —Ni1—O9	88.45 (13)	O5—Ni2—O9	91.38 (13)
06—Ni1—O9 ⁱ	84.96 (13)	O1—Ni2—O9	94.71 (13)
06 ⁱ —Ni1—O9 ⁱ	95.04 (13)	O10—Ni2—O9	90.76 (14)
O11—Ni2—O7	91.65 (13)	011—Ni2—09	175.67 (12)
09—Ni2—07	91.57 (12)	O5—Ni2—O7	177.05 (13)
010—Ni2—07	90.63 (16)	01—Ni2—07	85.24 (14)
Ni2—09—Ni1	113.16 (14)		

Complex 2

Zn1—06	2.1305 (16)	Zn2—O1	2.134 (2)
Zn1—O6 ⁱ	2.1306 (16)	Zn2—O11	2.1535 (19)
Zn1—O2	2.1467 (17)	Zn2—O5	2.1680 (18)
Zn1—O2 ⁱ	2.1468 (17)	Zn2—O7	2.192 (2)
Zn1—O9 ⁱ	2.2627 (17)	Zn2—O10	2.182 (2)
Zn1—09	2.2628 (17)	Zn2—O9	2.2514 (15)
O6—Zn1—O6 ⁱ	180.0	O1—Zn2—O11	88.15 (8)
O6—Zn1—O2	91.34 (8)	O1—Zn2—O5	94.55 (8)
O6 ⁱ —Zn1—O2	88.66 (8)	O11—Zn2—O5	87.46 (8)
O6—Zn1—O2 ⁱ	88.66 (8)	O1—Zn2—O7	84.73 (10)
O6 ⁱ —Zn1—O2 ⁱ	91.34 (8)	O11—Zn2—O7	94.20 (8)
O2—Zn1—O2 ⁱ	180.00 (5)	O5—Zn2—O7	178.16 (8)
O6—Zn1—O9 ⁱ	87.54 (7)	O1—Zn2—O10	170.10 (9)
O6 ⁱ —Zn1—O9 ⁱ	92.46 (7)	O11—Zn2—O10	87.06 (8)
O2—Zn1—O9 ⁱ	89.49 (7)	O5—Zn2—O10	93.89 (8)
O2 ⁱ —Zn1—O9 ⁱ	90.51 (7)	O7—Zn2—O10	86.99 (9)
O6—Zn1—O9	92.46 (7)	O1—Zn2—O9	94.12 (7)

O6 ⁱ —Zn1—O9	87.54 (6)	O11—Zn2—O9	177.20 (7)
O2—Zn1—O9	90.51 (7)	O5—Zn2—O9	90.72 (7)
O2 ⁱ —Zn1—O9	89.49 (7)	O7—Zn2—O9	87.65 (7)
O9 ⁱ —Zn1—O9	180.0	O10—Zn2—O9	90.95 (7)

Complex 3

Ni1—N4i	2.0809 (18)	Ni2—N9	2.0399 (17)
Ni1—N8ii	2.0987 (16)	Ni2—N9 ^{iv}	2.0399 (17)
Ni1—O9iii	2.1045 (15)	Ni2—O7	2.0902 (15)
Ni1—N1	2.1047 (17)	Ni2—O7 ^{iv}	2.0903 (15)
Ni1—N5	2.1054 (16)	Ni2—O5	2.0974 (15)
Ni1—O1	2.1431 (15)	Ni2—O5 ^{iv}	2.0974 (15)
N4 ⁱ —Ni1—N8 ⁱⁱ	90.62 (7)	N4 ⁱ —Ni1—O1	86.64 (7)
N4 ⁱ —Ni1—O9 ⁱⁱⁱ	98.92 (7)	N8 ⁱⁱ —Ni1—O1	87.25 (6)
N8 ⁱⁱ —Ni1—O9 ⁱⁱⁱ	94.57 (6)	O9 ⁱⁱⁱ —Ni1—O1	174.12 (6)
N4 ⁱ —Ni1—N1	175.34 (7)	N1—Ni1—O1	88.80 (7)
N8 ⁱⁱ —Ni1—N1	88.21 (7)	N5—Ni1—O1	93.18 (6)
O9 ⁱⁱⁱ —Ni1—N1	85.67 (7)	N9—Ni2—N9 ^{iv}	180.0
N4 ⁱ —Ni1—N5	87.48 (7)	N9—Ni2—O7	87.72 (7)
N8 ⁱⁱ —Ni1—N5	178.03 (7)	N9 ^{iv} —Ni2—O7	92.27 (7)
O9 ⁱⁱⁱ —Ni1—N5	85.18 (7)	N9—Ni2—O7 ^{iv}	92.27 (7)
N1—Ni1—N5	93.73 (7)	N9 ^{iv} —Ni2—O7 ^{iv}	87.73 (7)
O7—Ni2—O7 ^{iv}	180.0	N9—Ni2—O5 ^{iv}	91.57 (7)
N9—Ni2—O5	88.43 (7)	N9 ^{iv} —Ni2—O5 ^{iv}	88.44 (7)
N9 ^{iv} —Ni2—O5	91.57 (7)	O7—Ni2—O5 ^{iv}	89.41 (6)
07—Ni2—O5	90.60 (6)	O7 ^{iv} —Ni2—O5 ^{iv}	90.60 (6)
O7 ^{iv} —Ni2—O5	89.40 (6)	O5—Ni2—O5 ^{iv}	180.0

Complex 4

Zn1—O7 ⁱ	1.994 (2)	Zn1—N2	2.115 (2)
Zn1—09	2.039 (2)	Zn1—N1	2.159 (2)
Zn1—O3	2.050 (2)		
07 ⁱ —Zn1—O9	94.23 (9)	O3—Zn1—N2	104.52 (9)

O7 ⁱ —Zn1—O3	95.15 (10)	O7 ⁱ —Zn1—N1	170.31 (10)
O9—Zn1—O3	139.75 (9)	O9—Zn1—N1	86.21 (9)
O7 ⁱ —Zn1—N2	94.41 (10)	O3—Zn1—N1	90.70 (9)
09—Zn1—N2	113.65 (9)	N2—Zn1—N1	76.61 (10)

Symmetry codes: for complex 1: (i) -x+1/2, -y+1/2, -z+1; (ii) x, -y, z-1/2; (iii) x, -y, z+1/2. For complex 2: (i) -x+1/2, -y+1/2, -z+1; (ii) x, -y, z-1/2; (iii) x, -y, z+1/2. For complex 3: (i) x, y+1, z; (ii) x, y, z-1; (iii) -x+1, -y+1, -z; (iv) -x, -y, -z-1; (v) -x-1, -y, -z-1; (vi) -x, -y+1, -z+1; (vii) x, y-1, z; (viii) x, y, z+1. For complex 4: (i) -x+2, -y, -z+1.

Tables S4. Hydrogen bonds in crystal packing [Å, °] of complexes **1**, **2** and **4**. Complex 1

D—H…A	<i>D</i> —Н	H····A	$D \cdots A$	D—H···A
O10— H10 <i>B</i> ⋯O12	0.82	2.17	2.923 (11)	154
O10— H10 <i>A</i> …O10 ⁱⁱ	0.82	2.56	3.062 (14)	121
O9—H9 <i>B</i> ⋯O12	0.82	2.04	2.691 (11)	136
O9—H9 <i>B</i> ⋯O2 ⁱ	0.82	2.40	2.891 (8)	120
O9—H9A…O8	0.82	1.78	2.518 (8)	148

Complex 3

O7—H7 <i>A</i> ⋯O6	0.82	1.86	2.586 (2)	148
O7—H7 <i>B</i> ⋯O2 ⁱ	0.94	1.87	2.806 (2)	173

Complex 4

O6—H6…O4 ⁱ	0.82	1.83	2.643 (3)	173
O9—H9A…O4 ⁱⁱ	0.82	2.07	2.799 (2)	148
O9—H9 <i>B</i> …O8 ⁱⁱⁱ	0.82	1.83	2.645 (2)	171

Symmetry codes: For complex 1 (i) -x+1/2, -y+1/2, -z+1; (ii) -x, y, -z+1/2; For complex 2:

(i) x, y, z-1; For complex 4: (i) x, y+1, z; (ii) -x+1, -y, -z+1; (iii) x-1, y, z.

		Complex 2		Complex 4	
	Blank	Cr ₂ O ₇ ²⁻	CrO ₄ ²⁻	$Cr_2O_7^{2-}$	CrO4 ²⁻
	1	6493	6495	1243	1274
Fluorescenc	2	6473	6467	1226	1261
e Intensity	3	6433	6429	1245	1277

Table S5 LOD calculations for $Cr_2O_7^{2-}$ and CrO_4^{2-}

	4	6467	6464	1227	1262
	5	6437	6437	1237	1265
Standard					
deviation (σ)		22.64	23.53	7.88	6.49
Slope (m)		39.23μM	22.63 μM	7.76µM	3.65 μM
Detection		1.73µM	3.12µM	3.04 μM	5.33μΜ
limit (3σ/m)		(0.508ppm)	(0.605ppm)	(0.890ppm)	(1.03ppm)

References

- S1. Lv, R.; Wang, J.; Zhang, Y.; Li, H.; Yang, L.; Liao, S.; Gu, W.; Liu, X. J. Mater. Chem. A 2016, 4, 15494–15500.
- S2. C-S. Cao, H.-C. Hu, H. Xu, W.-Z. Qiao, and B. Zhao, CrystEngComm, 2016, 18, 4445.
- S3. R. Lv, J. Wang, Y. Zhang, H. Li, L. Yang, S. Liao, W. Gu and X. Liu. J. Mater. Chem. A, 2016, 4, 15494-15500
- S4. Z. Sun, M. Yang, Y. Ma and L. Li, *Cryst. Growth.Des.*, 2017, **17**, 4326.
- S5. D. D. Yang, L. P. Lu, M. L. Zhu, *Dalton Trans.*, 2019, 48, 10220-10234.
- S6. W. J. Gong, R. Yao, H. X. Li, Z. G. Ren, J. G. Zhang and J. P. Lang, Dalton Trans., 2017, 46, 16861.
- S7. Li, S. D.; Lu, L. P.; Zhu, M. L.; Feng, S. S.; Su, F.; Zhao, X. F. *CrystEngComm* 2018, **20**, 5442-5456.
- S8. B. Parmar, Y. Rachuri, K.K. Bisht, R. Laiya, and E. Suresh, Inorg. Chem., 2017, 56, 2627.