
Supplemental Material

Figure S1. MC simulation employing a large 2D Gaussian function surface energy configuration and
accompanying simulation snapshots. The region of influence of the high surface energy is circumscribed
with a black circle that is superimposed on simulation results to serve as a visual guide.

Figure S2. MC simulation employing randomly distributed small 2D Gaussian functions for the surface
energy configuration and accompanying simulation snapshots. The regions of influence of the high
surface energy are circumscribed with black circles that are superimposed on simulation results to serve
as a visual guide.

Electronic Supplementary Material (ESI) for CrystEngComm.
This journal is © The Royal Society of Chemistry 2020

Figure S3. MC simulation employing a long diagonal surface energy configuration and accompanying
simulation snapshots. The region of influence of the high surface energy is circumscribed with two black
lines that are superimposed on simulation results to serve as a visual guide.

============== MC Crystallization Simulation - Version 4.0 ==============
===
Version 1.0 is a 0th order random crystallization simulation, applying
arbitrary probabilities to the relevant phenomenological events of
nucleation, growth, and branching. Probabilities are adjusted empirically to
track trends of observed experimental data.

Version 2.0 is a more sophisticated Monte Carlo style simulation, applying a
pseudo-Metropolis method to evaluate trial MC moves. Energy benefits given
for forming "bonds", and energy penalties for forming "interfaces" are
assigned empirically to reproduce observations.
#
Version 2.1 enhances simulation by only selecting vacant sites for MC step
consideration, to account for limitation of Version 2.0 that showed
rate of crystallization "slowing" as more sites became occupied.
#
Version 3.0 also incorporates a distribution of surface energies across the
surface, which controls sites of nucleation and the balance between
nucleation and growth rates throughout course of the simulation.

Version 4.0 incorporates branching by allowing for 90-degree rotation
of a new unit as it is added, which favors the attaching of new adjacent
units in this orientation.
===
import numpy as np

import matplotlib.pyplot as plt
from matplotlib.colors import Normalize

========================= Initialize Parameters =========================
MC_samples = 40000000 # Number of trial MC steps
Accepted = 0 # Tracks number of accepted MC moves
Rejected = 0 # Tracks number of rejected MC moves
Branches = 0 # Tracks number of times a rotated unit is added
Seed = np.random.randint(2147483646) # Generate seed
MC_seed = np.random.seed(Seed) # Seed random number generator
branching_probability = 0.25 # Probability of rotating new trial unit

cmap = 'afmhot'
norm = Normalize(-0.5, 1.8)

============================ Generate Grids =============================
===
Variable 'grid' stores if a given "lattice" location
contains a crystallite unit (1 for yes, 0 for no)
===
dimensionality = 500
total_lattice_sites = int((dimensionality - 2)**2)
grid = np.zeros((dimensionality, dimensionality), dtype='int')
indices = np.indices((dimensionality, dimensionality))

Orientation default is 1, value of 0 corresponds to 90 degree rotation
orientation = np.ones((dimensionality, dimensionality), dtype='int')

============================== Energetics ===============================
===
Assign energy benefits and penalties associated with forming "bonds"
and "interfaces". The base energy (surface energy) for each site is set at
zero initially and adjusted to provide desired configuration. "1" corresponds
to uniform (trivial) configuration. "2" corresponds to a distribution where
each site is randomly selected from the Gaussian distribution centered
around zero. "3" corresponds to a single, large 2D Gaussian function in the
center of the lattice. "4" corresponds to many randomly distributed small 2D
Gaussian functions. "5" corresponds to a single long and narrow diagonal
strip of high energy across the middle of the lattice.
===
bond = -5 # Energy benefit from adding an adjacent unit
vert_interface = 1.25 # Energy penalty from forming vertical interface
horz_interface = 5.25 # Energy penalty from forming horizontal interface

Surface Energy Distribution

configuration = 1 # Determines which energy configuration to implement

if configuration == 1: # Uniform Distribution
surface_energy_distribution = np.zeros((dimensionality, dimensionality), \
dtype='int')

elif configuration == 2: # Random Distribution
surface_energy_mean = 0.0 # Mean of surface energy distribution
surface_energy_stdev = 1.0 # Standard deviation of surface energy distribution
surface_energy_distribution = np.random.normal(\
surface_energy_mean, surface_energy_stdev, \
 (dimensionality, dimensionality))

elif configuration == 3: # Large 2D Gaussian
 spread = dimensionality * 4 # Spread of effect of defect
 amp = 5 # Max surface energy at peak of defect
 center = dimensionality / 2 # Define the center coordinate of the lattice
x_diff = np.power(center - indices[1], 2) # X differences squared
y_diff = np.power(center - indices[0], 2) # Y differences squared
surface_energy_distribution = amp*np.exp(-((x_diff+y_diff)/spread))

elif configuration == 4: # Random Small 2D Gaussians
 defects = 40 # Number of defect sites in surface
 spread = dimensionality/10 # Spread of effect of defect
 amp = 5 # Max surface energy at peak of defect
surface_energy_distribution = np.zeros((dimensionality, dimensionality))
 for counter in range(0, defects):
 [x_center, y_center] = np.random.randint(1, dimensionality - 1, size=2)
x_diff = np.power(x_center - indices[1], 2)
y_diff = np.power(y_center - indices[0], 2)
surface_energy_distribution += amp*np.exp(-((x_diff+y_diff)/spread))

else: # Diagonal line
 width = 11 # Odd number giving the width of the line
 amp = 5 # Max surface energy at peak of defect
 base = amp*np.ones((dimensionality, dimensionality))
 upper = np.triu(base, (width-1)/2)
 lower = np.tril(base, -(width-1)/2)
surface_energy_distribution = np.subtract(np.subtract(base, upper), lower)

====================== Crystallization Simulation =======================
for counter in range(MC_samples):
 # End simulation if entire surface crystallizes
 if Accepted == total_lattice_sites:
print('Surface completely crystallized')

 break

 # Save surface plot every specified number of steps
 if (counter + 1) % 5000000 == 0:
 fig = plt.figure()
 power = np.int(np.floor(np.log10(counter + 1)))
 value = (counter + 1) / pow(10, power)
file_name = 'E{:d}_{:.1f}_steps.png'.format(power, value)
plt.pcolormesh(grid, cmap=cmap, norm=norm)
plt.colorbar()
plt.title(format('%d Trial Monte Carlo Steps' % (counter + 1)))
fig.savefig(file_name)
plt.close(fig)

 # Pick an uncrystallized spot at random
 [trial_x_index, trial_y_index] = np.random.randint(
 1, dimensionality - 1, size=2)
 while grid[trial_y_index, trial_x_index] == 1:
 [trial_x_index, trial_y_index] = np.random.randint(
 1, dimensionality - 1, size=2)

 # Determine neighboring sites and corresponding orientation
up_neighbor = grid[trial_y_index - 1, trial_x_index]
up_neighbor_orient = orientation[trial_y_index - 1, trial_x_index]

down_neighbor = grid[trial_y_index + 1, trial_x_index]
down_neighbor_orient = orientation[trial_y_index + 1, trial_x_index]

left_neighbor = grid[trial_y_index, trial_x_index - 1]
left_neighbor_orient = orientation[trial_y_index, trial_x_index - 1]

right_neighbor = grid[trial_y_index, trial_x_index + 1]
right_neighbor_orient = orientation[trial_y_index, trial_x_index + 1]

all_neighbors = np.array([up_neighbor, down_neighbor,
left_neighbor, right_neighbor])
 [filled_neighbors] = np.nonzero(all_neighbors)

========================= Evalutate Orientation =========================
===
Determine the average orientation to use for determining the definition
of rotate versus non-rotated unit
===
 # If site has no neighbors, use default value of left/right as preferred
 if len(filled_neighbors) == 0:

avg_orient = orientation[trial_y_index, trial_x_index]
 # If site has neighbors, use the average of their orientations for the
 # preferred direction. If they are equal, use left/right as preferrred
 else:
all_orient = np.array([up_neighbor_orient, down_neighbor_orient,
left_neighbor_orient, right_neighbor_orient])
avg_orient = np.round(np.average(all_orient[filled_neighbors]))

 # Determine branching or continuation
 # If the random number is less than the probability, 90 degree rotation
 # occurs relative to preferred orientation
orient_rand = np.random.random()
prob_check = int(orient_rand<branching_probability)
trial_orient = int((avg_orient and not(prob_check)) or
 (not(avg_orient) and prob_check)) # XOR logic gate

 # Determine energy benefit/penalty to adding crystal unit in this location
delta_E = -surface_energy_distribution[trial_y_index, trial_x_index]

 # Evaluate energetics for standard orientation
 if trial_orient == 1:
 # If down site is unoccupied, penalize for new vertical interface
 if down_neighbor == 0:
delta_E += vert_interface
 # If down site is occupied and orientation matches down site,
 # benefit for removing vertical interface and forming a new bond.
 # If orientation does not match, treats site as unoccupied
 else:
delta_E += int(trial_orient == down_neighbor_orient) * \
 (bond - vert_interface) + \
int(not(trial_orient == down_neighbor_orient)) * vert_interface

 # If up site is unoccupied, penalize for new vertical interface
 if up_neighbor == 0:
delta_E += vert_interface
 # If up site is occupied and orientation matches up site,
 # benefit for removing vertical interface and forming a new bond.
 # If orientation does not match, treats site as unoccupied
 else:
delta_E += int(trial_orient == up_neighbor_orient) * \
 (bond - vert_interface) + \
int(not(trial_orient == up_neighbor_orient)) * vert_interface

 # If right site is unoccupied, penalize for new horizontal interface
 if right_neighbor == 0:

delta_E += horz_interface
 # If right site is occupied and orientation matches right site,
 # benefit for removing horizontal interface and forming a new bond.
 # If orientation does not match, treats site as unoccupied
 else:
delta_E += int(trial_orient == right_neighbor_orient) * \
 (bond - horz_interface) + \
int(not(trial_orient == right_neighbor_orient)) * horz_interface

 # If left site is unoccupied, penalize for new horizontal interface
 if left_neighbor == 0:
delta_E += horz_interface
 # If left site is occupied and orientation matches left site,
 # benefit for removing horizontal interface and forming a new bond.
 # If orientation does not match, treats site as unoccupied
 else:
delta_E += int(trial_orient == left_neighbor_orient) * \
 (bond - horz_interface) + \
int(not(trial_orient == left_neighbor_orient)) * horz_interface

 # Evaluate energetics for rotated orientation
 else:
 # If down site is unoccupied, penalize for new horizontal interface
 if down_neighbor == 0:
delta_E += horz_interface
 # If down site is occupied and orientation matches down site,
 # benefit for removing horizontal interface and forming a new bond.
 # If orientation does not match, treats site as unoccupied
 else:
delta_E += int(trial_orient == down_neighbor_orient) * \
 (bond - horz_interface) + \
int(not(trial_orient == down_neighbor_orient)) * horz_interface

 # If up site is unoccupied, penalize for new horizontal interface
 if up_neighbor == 0:
delta_E += horz_interface
 # If up site is occupied and orientation matches up site,
 # benefit for removing horizontal interface and forming a new bond.
 # If orientation does not match, treats site as unoccupied
 else:
delta_E += int(trial_orient == up_neighbor_orient) * \
 (bond - horz_interface) + \
int(not(trial_orient == up_neighbor_orient)) * horz_interface

 # If right site is unoccupied, penalize for new vertical interface

 if right_neighbor == 0:
delta_E += vert_interface
 # If right site is occupied and orientation matches right site,
 # benefit for removing vertical interface and forming a new bond.
 # If orientation does not match, treats site as unoccupied
 else:
delta_E += int(trial_orient == right_neighbor_orient) * \
 (bond - vert_interface) + \
int(not(trial_orient == right_neighbor_orient)) * vert_interface

 # If left site is unoccupied, penalize for new vertical interface
 if left_neighbor == 0:
delta_E += vert_interface
 # If left site is occupied and orientation matches right site,
 # benefit for removing vertical interface and forming a new bond.
 # If orientation does not match, treats site as unoccupied
 else:
delta_E += int(trial_orient == left_neighbor_orient) * \
 (bond - vert_interface) + \
int(not(trial_orient == left_neighbor_orient)) * vert_interface

 # Calculate probability of adding growth unit then compare against random
 # number between 0.0 and 1.0, accepting move if probability exceeds it
exp_E = np.exp(-delta_E)
 if exp_E>= 1.0:
grid[trial_y_index, trial_x_index] = 1
orientation[trial_y_index, trial_x_index] = trial_orient
 Accepted += 1
 Branches += prob_check
 else:
 test = np.random.random()
 if exp_E> test:
grid[trial_y_index, trial_x_index] = 1
orientation[trial_y_index, trial_x_index] = trial_orient
 Accepted += 1
 Branches += prob_check
 else:
 Rejected += 1

Surface Energy Distribution Plot
plt.figure()
lower = 0 # Lower bound of data scale
upper = 5 # Upper bound of data scale
plt.pcolormesh(surface_energy_distribution)
plt.colorbar()

plt.clim(lower, upper)
plt.title('Surface Energy Distribution')

