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Part A: Computational Model and Inverse Design Algorithm

A.1 Incorporation of constrained fields We consider a system of AB diblock copolymers 

directed by topographical templates with an array of nanoposts. The system has n 

monodisperse AB diblock copolymer chains with volume fraction fA of A-species. The block 

copolymers are modeled by the Gaussian chains with harmonic stretching energy. In the 

framework of field-theoretical simulations, the density fields of A and B blocks are 

characterized by ρA(r) and ρB(r), respectively. The nanoposts are described by 'cavity' 

function h(r) varying from 1 at their centers to 0 outside the nanoposts, which is similar to the 

formula used in the hybrid particle-field simulations.S1,S2 The decaying of the function is 

scaled by the radius Rp of nanoposts. For a set of nanoposts, the overall density is written as 

, where Np is the number of 
𝜌𝑃(𝑟) =
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nanoposts, rj is the center of j-th nanopost, and δ characterizes the width of nanopost-polymer 

interface. The free energy functional F (in units of thermal energy kBT) for the system is 

given by

(S1)
𝐹 =

1
𝑉∫𝑑𝑟 {1

2 ∑
𝐼,𝐽 = 𝐴,𝐵,𝑃

𝜒𝐼𝐽𝑁𝜌𝐼𝜌𝐽 ‒ ∑
𝐼 = 𝐴,𝐵

𝜔𝐼𝜌𝐼 +
1
2

𝜅( ∑
𝐼 = 𝐴,𝐵,𝑃

𝜌𝐼 ‒ 1)2} ‒ 𝑐𝐵𝑙𝑛
𝑄

𝑉𝑐𝐵

where χIJN is the combined Flory-Huggins interaction parameter between I- and J-type 

components. The Helfand-type parameter κ controls the local compressibility of system. cB 

and V are the volume fraction of block copolymers and the volume of system, respectively. Q 

is the single chain partition function. ωI denotes the chemical potential field of I-type 

component. 

For the inverse design algorithm of topographical templates described in subsection A.2, 
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the target structures are introduced by constrained fields via the Lagrange method.S3 We 

suppose that the density  of I-type component is known in certain domains S. The 𝜌𝑇
𝐼

constrained functional is given by 

(S2)
𝐸𝜆 =

1
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𝑑𝑟𝜆𝐼(𝜌𝐼 ‒ 𝜌𝑇
𝐼)

where λI is the Lagrange multiplier of I-type component (i.e., the multiplier λI forces the I-

type component to form the desired structures in the domains S). 

Similar to the Fraaije’s idea, S3 a functional is introduced

(S3)𝐻 = 𝐹 + 𝐸𝜆

Minimization of the functional with respect to the variables ωI, ρI and λI yields the equations 

of self-consistent field theory (SCFT)

(S4)
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We use the pseudo-spectral method to solve the modified diffusion equations in SCFT. The 

fields are updated by means of a two-step Anderson mixing scheme. The iteration steps are 

repeated until the free energy functional H reaches a local minimum. For more details on the 

numerical implementation of SCFT, see the Fredrickson's monograph and our previous 

works.S4,S5,S6

Three types of target structures (constrained fields) are considered in our work, which is 

shown in Figure S1. Target structure T1 contains T-junctions and isolated line. T2 and T3 are 
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nested-elbow and large-area aperiodic structures, respectively. To test the validity of our 

proposed model (the nanoposts are not included), we perform the simulations for the self-

assembly of symmetric block copolymers subjected to the constrained fields. For all the 

simulations, the combined Flory-Huggins parameter is chosen as χABN=20. The natural 

period of self-assembled nanostructures under these conditions is L0≈4.0Rg. In the settings of 

constrained fields, the density field of A blocks is constrained to  (red color), but the 𝜌𝑇
𝐴 = 1.0

remainder of box is free of any constraints (left panels of Figure S1). Right panels of Figure 

S1 illustrate the final structures of symmetric block copolymers in presence of constrained 

fields. Since the constrained patterns are not natural morphology, the block copolymers form 

the lamellae containing predictive defects at specific locations. The observations confirm the 

fact that our proposed model can reproduce the target structures. It should be pointed out that 

unlike the straight lamellae in the target structures, the lamellae in the final structures emerge 

undulations.  

A.2 Inverse design algorithm Herein, we present the steps of algorithm to achieve the 

inverse solutions of topographical templates for given target structures of block copolymers. 

These steps are illustrated with corresponding results for the target structure T1, which are 

shown in Figure 1 of main text. The outline for the inverse design algorithm is listed as 

follows:

(1st step): The constrained density fields for the target structure are constructed via the 

Lagrange method, which is described in subsection A.1. As a typical example, the density 

fields for the target structure with T-junctions and isolated line are shown in Figure 1a.

(2nd step): Nanoposts with fixed number Np and radius Rp are randomly placed into the 
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nontrivial structure with constrained fields. The nanoposts are assumed to be mobile and 

preferential to the A blocks (e.g., χAPN=-20 and χBPN=20). The hybrid particle-field 

simulations are performed in this step and more details about the simulations can refer to our 

previous works.S2,S7 The procedure is briefly listed: (i) The self-consistent field equations 

(Eqs. (S4)-(S6)) for the polymer fluids are numerically solved in the real-space. (ii) The 

motion of nanoposts obeys the Newton’s motion equations , where  𝑟𝑛 + 1
𝑗 = 𝑟𝑛

𝑗 + 𝑓𝑗Δ𝑡 + 𝜃𝑗 𝑟𝑛
𝑗

is the center of j-th nanopost at n-th iteration and θj is the Gaussian white noise.  
𝑓𝑗 ≡ -

∂𝐻
∂𝑟𝑗 

is the total force acting on the j-th nanopost.S1 It should be mentioned that the A-wetting 

nanoparticles are migrated into the energetically favorable A-rich domains to depress the 

contribution of enthalpy.S8 Furthermore, the nanoparticles are moved to the centers of defects 

as “fillers”, which alleviate the strain energy coming from the conformational entropy of 

polymer chains.S9,S10 The inter-particle interaction modeled by repulsive part of Lennard-

Jones potential is also included to avoid the overlap of mobile nanoposts. (iii) Step (i) is 

repeated until the mean-square displacement of nanoposts is less than 10-3Rg
2 and the 

condition of  is satisfied. Such configuration of nanoposts is |1 ‒ 𝜌𝐴 ‒ 𝜌𝐵 ‒ 𝜌𝑃| < 10 ‒ 3

considered as a candidate solution (Figure 1b). 

(3rd step): The same nontrivial structure can be achieved by the self-assembly of block 

copolymers directed by various arrangements of nanoposts (i.e., degenerate configurations of 

nanoposts in the topographical templates could produce similar target structure). To account 

for the fact, ndegen independent runs with random initial placement of nanoposts are carried 

out for each choice of target structure. For the cases of target structures T1, T2 and T3, the 

values of ndegen are set as 200, 200 and 500, respectively. The location of nanoposts and the 
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free energy of final configuration are recorded. A statistical weight sampling of nanopost 

locations is calculated by the formula , where g(r)=1 if 
𝑃(𝑟) = ∑

𝑛

𝑔𝑛(𝑟)𝑒
‒ 𝐻𝑛

∑
𝑛

𝑒
‒ 𝐻𝑛

nanoposts are located at r while g(r)=0 if not. Hn denotes the free energy functional of system 

for the n-th run (Eq. (S3)). The probability distribution of nanoposts is plotted in Figure 1c.

(4th step): The value of pthresh is chosen such that the number of deduced nanoposts is 

close to the input value Np of nanoposts in the 2nd step. Such arrangement of nanoposts is 

considered to be an inverse solution, which is illustrated in Figure 1d.

(5th step): A normal forward SCFT simulation is performed for the symmetric block 

copolymers under the topographical template of immobile nanoposts and the random initial 

condition of density fields. The resulting self-assembled structure will be compared with the 

target structure (Figure 1e).
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Original target 
structures

T1

T2

T3

Relaxed target 
structures

Figure S1. Simulations of symmetric AB block copolymers with the constraint of density 

fields for target structures. (Left panel) Constrained fields of A blocks. T1: T-junctions and 

isolated line; T2: nested-elbow structure; T3: Large-area aperiodic structure. Red color denote 

the constraint of . (Right Panel) Relaxed density field of A blocks. Color bar 𝜌𝑇
𝐴 = 1.0

represents the strength of density field ρA of A blocks. Note that the relaxed density field of A 

blocks server as the input configuration of target structures in Figure 1.
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(a)

(b)

(c)

Figure S2. Typical configurations of nanoposts in the presence of constrained fields of target 

structure T3. (a) #Iteration=1, (b) #iteration=500, and (c) #iteration=10000. The target 

structure T3 is introduced by the Lagrange method. As the iteration step of simulations goes 

by, the mobile nanoposts are moved towards the A-rich domains as well as T-junctions and 

bends. 
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Part B: Fidelity Parameter

To evaluate the difference between the target and resulting structures, we calculate fidelity 

parameter via the skeletonization algorithm, where the discrete space of grid is the same as 

that used in the SCFT simulations. A visual outline of the calculation of fidelity parameter is 

depicted in Figure S3. First of all, the density fields of the target and resulting structures are 

thresholded to create binary images, where the value is 1 at ρA(r)>0.5 and 0 at ρA(r)≤0.5 for 

the target structure (1 at ρA(r)+ρP(r)>0.5 for the resulting structure). The skeletonization 

algorithm proposed by Zhang and Suen is applied to generate skeleton lines of domains with 

value of 1.S9 As shown in Figures S3a and S3b, the skeleton lines of target and resulting 

structures are respectively represented by the binary map MT(r) and MR(r) defined as 

 (S7)
𝑀𝐼 = 𝑇,𝑅(𝑟) = {1 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝑙𝑖𝑛𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡 𝑟 

0 𝑒𝑙𝑠𝑒 �
Subsequently, we introduce subtraction operator  to identify the differences of ⊝

skeleton lines between the target and resulting structures. For instance, comparison of 

skeleton lines of target structures at the grid point r with these of resulting structures at the 

nearest grid point r' is given by 

(S8)
𝑃𝑅𝑇(𝑟) ≡ 𝑀𝑅(𝑟') ⊖ 𝑀𝑇(𝑟) = {1 𝑚𝑖𝑛(|𝑟' ‒ 𝑟|) > 𝑟𝑐𝑢𝑡 𝑎𝑛𝑑 𝑀𝑅(𝑟') = 𝑀𝑇(𝑟) = 1 

0 𝑒𝑙𝑠𝑒 �
where the cutoff distance rcut is set as 2Δx (Δx: discrete space of grid) to tolerate a slight 

deviation from the target structures. Given such definition, PRT(r)=0 implies that the skeleton 

lines of resulting structures at grid point r match these of target structure (green squares in 

Figure S3c), while PRT(r)=1 suggest the incorrect match (red squares). Similarly, we 

introduce the subtraction operator  to compare the skeleton lines 𝑃𝑇𝑅(𝑟) ≡ 𝑀𝑇(𝑟') ⊖ 𝑀𝑅(𝑟)

of resulting structures at the grid point r with these of target structures at the nearest grid 
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point r'. PTR(r)=0 suggests the match between the target and resulting structures at grid point 

r (green squares in Figure S3d), but PTR(r)=1 suggests the missing case of resulting structures 

in comparison to the target structures (red squares). 

Finally, addition operator is defined as 

(S9)
Ω(𝑟) ≡ 𝑃𝑅𝑇(𝑟)⨁𝑃𝑇𝑅(𝑟) = {1 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑜𝑟 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑚𝑎𝑡𝑐ℎ

0 𝑤𝑒𝑙𝑙 𝑚𝑎𝑡𝑐ℎ �
The incorrect or missing matches between the target and resulting structures are represented 

by the red squares in Figure S3e. The fidelity parameter ξ is given by 

 
𝜉 =  

𝑁𝑀𝑇(𝑟) = 1 ‒  𝑁Ω(𝑟) =  1

𝑁𝑀𝑇(𝑟) = 1

(S10)

where   represents the total point number of skeleton lines of target structures and 
𝑁𝑀𝑇(𝑟) = 1

NΩ(r)=1 corresponds to the number of incorrect/missing points of resulting structures. As the 

fidelity parameter ξ is large, the matching degree between the target and resulting structures 

becomes well. As the fidelity parameter is larger than the critical value ξc=0.98, the inverse 

solutions of topographical templates have the capability to reproduce the target structures. It 

should be pointed out that the fidelity parameter ξ could be negative if the topographical 

templates are inefficient.
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(b)

(a) (c)

(d)

(e)

Matching

Incorrect

Matching

Missing

(r)

Missing
Incorrect

(r)

(r)

(r)

(r)

Incorrect 
or missing

Figure S3. Visual outline of calculation of fidelity parameter. (a) Skeletonization of A-rich 

domains of target structure. (b) Skeletonization of A-rich and nanoparticle domains of 

resulting structure. In images (a) and (b), skeletonized lines MT and MR highlighted by black 

lines are overlaid on the original density field of A blocks. (c) Binary image of 

. The subtraction operator  refers to the text. (d) Binary image of 𝑃𝑅𝑇(𝑟) ≡ 𝑀𝑅 ⊖ 𝑀𝑇 ⊖

. In images (c) and (d), the green squares denote the well match between 𝑃𝑇𝑅(𝑟) ≡ 𝑀𝑇 ⊖ 𝑀𝑅

the target and resulting structures at given points. The red squares denote the incorrect or 

missing case. The skeletonized lines are represented by the black squares (Note that the green 

squares are overlaid on the black squares under the condition of exact match). (e) Binary 

image of addition operator . The red squares highlight the incorrect or Ω(𝑟) ≡ 𝑃𝑅𝑇⨁𝑃𝑇𝑅

missing match.
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Part C: Additional Figures
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Figure S4. (a) Fidelity parameter ξ as a function of the number Np of nanoposts for the target 

structure T1. The radius of nanoposts is fixed at Rp=0.45Rg. (b) Fidelity parameter ξ as a 

function of the radius Rp of nanoposts. The number of nanoposts is fixed at Np=25. Insets are 

the resulting structures directed by the inverse solutions of topographical templates. The 

dashed line represents the critical value ξc of fidelity parameter. Note that the target structures 

are translated by 2.0Rg along both x- and y- axes. The nanoposts are attractive to the B blocks.
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Figure S5. (a) Self-assembled nanostructure of block copolymers directed by the 

topographical template via removing one red nanopost. (b) Final nanostructure registered by 

the topographical template via removing an array of nanoposts enclosed by red rectangle. The 

original topographical template is shown in Figure 3a of main text.



S14

(a)

Forward
SCFT

Forward
SCFT

Forward
SCFT

(c)(b) (d)

Forward
SCFT

Figure S6. Self-assembled nanostructures of block copolymers directed by the topographical 

templates via removing nanoposts highlighted by red color. (a) Removing nanopost at the 

center of T-junction, (b) removing nanopost at the interspace of adjoining T-junctions, (c) 

removing a pair of nanoposts at the interspaces, and (d) removing an array of nanoposts. The 

original topographical template is shown in Figure 5d of main text.
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Figure S7. (a) Probability distribution of nanoposts. (b) Probability distribution of nanoposts 

after symmetric operation. The symmetric operation of probability distribution P at grid point 

(i, j) is defined as Pi,j=( Pi,j + PNx-i,j + Pi,Ny-j + PNx-i,Ny-j)/4, where Nx and Ny are respectively the 

grid number of simulations along the x and y directions. The Roman numbers match the 

labels in Figure 6b of main text. 
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Figure S8. (a) M-like target structure with size of 8Rg×8Rg. (b) Inverse solution of 

topographical template and corresponding self-assembled nanostructure of block copolymers. 

The input parameters of inverse design algorithm are chosen as Np=16 and Rp=0.25Rg. With 

the help of deduced template, the block copolymers self-assemble into the M-like 

nanostructure. Through the skeletonization analysis, it is further confirmed that the resulting 

nanostructure matches well with the target one (i.e., the fidelity parameter ξ = 1.0).
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