Supplementary Information For Influence of Water on the $CH_3O^{\bullet} + O_2 \rightarrow CH_2O + HO_2^{\bullet}$ Reaction

Subhasish Mallick,[†] Amit Kumar,[†] Brijesh Kumar Mishra,[‡] and Pradeep

Kumar^{*,†}

†Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India

Department of Chemistry, International Institute of Information Technology Bangalore, Bangalore, 560100, India

E-mail: pradeep.chy@mnit.ac.in

Sl. No.	Contents
1	Formal proof for the same value of termolecular rate constant for the paths A, B and C
2	Table S1:Optimized geometries in cartesian coordinates and all normal mode frequencies
	calculated at the MN15-L/aug-cc-pVTZ theory
3	Table S2 :Termolecular rate constant (k_t) in cm ⁶ molecule ⁻² sec ⁻¹ for WM
	catalyzed reaction within temperature range (213 K - 900 K)
4	Table S3: Absolute energies (hartree) for all the species calculated at MN15L/aug-cc-pVTZ theory
5	Table S4 : Relative energies (ΔE_{WM}) including ZPE (kcal mol ⁻¹) for the complexes
	of water catalyzed channels with respect to the isolated reactants at the MN15-L/aug-cc-pVTZ $$
6	Details of post-CCSD(T) calculations
7	Table S5 :Absolute energies (hartree) for TS_{SHAT} and isolated reactants calculated at
	CCSD(T) level of theory
8	Table S6 : Absolute energies (hartree) for and isolated reactants calculated at $post-CCSD(T)$
	level of theory
9	$\textbf{Table S7}: \ \text{Contribution from post-CCSD}(T) \ \text{corrections to the energy barrier for SHAT channel}$
10	Table S8 : Ratio between CVT and TST (Γ) and tunneling coefficient (κ_{SCT}) for SHAT and DHAT
	path at various different temperatures
11	${\bf Table \ S9}: {\rm Tunneling \ coefficient \ for \ SHAT \ and \ DHAT \ path \ at \ various \ different \ temperatures.}$
12	$\textbf{Table S10}: \ \text{Rate constants for uncatalyzed channel obtained at CVT/SCT, TST/ZCT and TST/Eckart}$
	method at various temperature range
13	References

1 Formal proof for the same value of termolecular rate constant for the paths A, B and C

$$M+O+W \xrightarrow{k_1} M-O+W \xrightarrow{k_2} RC_{SHAT} \xrightarrow{k_{uni}} products + W$$
 (path A)

$$M+O+W \xrightarrow{k_1} M-W+O \xrightarrow{k_2} RC_{SHAT} \xrightarrow{k_{uni}} products + W$$
 (path B)

$$M+O+W \xrightarrow{k_1} O-W+M \xrightarrow{k_2} RC_{SHAT} \xrightarrow{k_{uni}} products + W$$
 (path C)

For path A,

$$K_{eq1} = \frac{[M - O]}{[M][O]}$$
(1)

and

$$K_{eq2} = \frac{[RC_{SHAT}]}{[M-O][W]} \tag{2}$$

Therefore,

$$K_{eq1} \times K_{eq2} = \frac{[RC_{SHAT}]}{[M][O][W]}$$
(3)

Similarly, for path B,

$$K_{eq1} \times K_{eq2} = \frac{[M-W]}{[M][W]} \times \frac{[RC_{SHAT}]}{[M-W][O]}$$
 (4)

$$K_{eq1} \times K_{eq2} = \frac{[RC_{SHAT}]}{[M][O][W]}$$
(5)

and similarly, for path C,

$$K_{eq1} \times K_{eq2} = \frac{[O-W]}{[O][W]} \times \frac{[RC_{SHAT}]}{[O-W][M]}$$
 (6)

$$K_{eq1} \times K_{eq2} = \frac{[RC_{SHAT}]}{[M][O][W]}$$

$$\tag{7}$$

From the equations 3, 5 and 7, it is clear that, the product of K_{eq1} and Keq2 is same for path A, B and C. As the k_{uni} for path A, B and C are also same, it gives same trimolecular rate k_t .

Table S1: Optimized geometries in Cartesian coordinates and normal mode frequencies of all species calculated at MN15L/aug-cc-pVTZ theory

species		cartesia	n coordinate	(Å)	frequ	uency(cr	$n^{-1})$
	0	-0.010886	0.790359	0.00	630	972	1139
	С	-0.010886	-0.571036	0.00	1363	1364	1512
CH_3O	Н	1.064364	-0.873809	0.00	2887	2958	2998
	Н	-0.455982	-1.011423	0.917135			
	Н	-0.455982	-1.011423	-0.917135			
O_2	0	0.00	0.00	0.603041	1682		
	0	0.00	0.00	-0.603041			
	0	0.00	0.00	0.118681	1666	3866	
H_2O	H	0.00	0.758828	-0.474724			
	н	0.00	-0.758828	-0.474724			
СНО	C	0.00	0.00	0.527005	1100	1955	1599
CH_2O		0.00	0.00	-0.527095	1199	1200	1052 2807
	п	0.00	0.949407 0.040407	-1.122202 1 199989	1047	2000	2091
		0.00	-0.949407	-1.122202 0.675892			
		0.00	0.00	0.010002			
	0	0.055586	-0.608155	0.00	1199	1463	3645
HO ₂	Н	-0.889376	-0.865124	0.00			00-00
- 2	0	0.055586	0.716295	0.00			
	0	-2.1019	-0.00194	-0.001023	34	71	79
	Н	-1.494939	-0.750262	0.00298	102	156	1666
O-W	Н	-1.521848	0.76748	0.004235	1681	3865	3972
	0	1.237853	-0.603193	0.000223			
	0	1.241145	0.602981	-0.000102			
	C	-1.194411	-0.543131	-0.000001	138	152	156
	H	-0.660308	-0.991577	0.869242	161	196	294
	Η	-2.262247	-0.835344	0.000127	563	1053	1199
M-W	H	-0.66055	-0.991499	-0.869434	1332	1413	1487
	0	1.834903	-0.151039	0.000014	1666	2902	2953
	0	-0.979627	0.804231	0.00001	3026	3826	3956
	H	1.206048	0.583505	-0.000097			
	н	2.701309	0.268167	-0.000026			
	C	1 282028	0 460700	0.00	175	243	341
	н	1.282028 1 486644	-0 143796	0.00	431	684	1051
	н	1 936130	1 348969	0.000412	1170	1178	1381
M-O	н	1.486644	-0.143796	-0.903472	1429	1438	1502
		0.00	1.003376	0.00	2976	3052	3095
		-1.042463	-0.177303	0.00	2010	5004	5000
	0	-0.532736	-1.304277	0.00			
			20 - -				

species		cartesia	n coordinate	(Å)	frequ	lency(cr	$n^{-1})$
	0	0.503389	-1.505174	-0.58743	35	67	83
	0	0.630647	-1.416163	0.608272	86	96	103
	Н	2.151609	0.677876	0.567767	114	133	140
	C	-1.394059	1.059565	0.090565	188	210	765
RC_{DHAT}	Н	-0.767429	1.014709	1.008168	980	1137	1339
	Н	-1.94091	2.023029	0.018746	1367	1511	1664
	0	-2.1874	-0.033305	-0.070532	1680	2884	2953
	0	1.910396	1.336681	-0.093485	2995	3861	3969
	Н	2.723683	1.831585	-0.241458			
	H	-0.658851	1.039106	-0.751213			
	C	1 400705	0.940907	0 544901	25	67	0.9
		-1.422780	-0.840207	-0.544291	30 86	07	83 102
		-2.307830	-0.755842	-0.78030	00 114	90 199	105
		-1.149041	-1.090299	-0.730841 1.227000	114	155 910	$140 \\ 765$
DC	П	-0.891147	-0.14303	-1.227999	188	$\frac{210}{1197}$	(00 1990
$R C_{SHAT}$		1.394481	-0.570439	0.021304	980	1137	1339
		1.089023	-0.382131	-0.540043	1307	1011	1004
		-0.091287	2.007444	-0.184708	1080	2884	2953
		-1.302303	-0.485094	0.708953	2995	3801	3909
		-0.510500	1.324342 2.014077	0.497059			
	п	0.072134	2.914077	0.242918			
	0	-0.737822	-1.072386	0.591976	-592	69	111
	0	-0.866089	-1.173219	-0.606338	149	159	247
	Н	-0.693866	0.256726	-1.028963	270	302	405
	C	-0.537604	1.33158	-0.4738	454	580	834
	Н	0.391016	1.659238	-0.995958	1096	1266	1274
TS_{SHAT}	Н	-1.467228	1.869616	-0.771712	1353	1513	1589
	0	-0.424083	1.012366	0.775733	1661	1873	2890
	0	2.085685	-0.200077	-0.156602	2973	3821	3956
	Н	2.937333	-0.466553	0.203806			
	H	1.59684	0.15803	0.597478			
		1 400001	1 010050	0.054010	1500		
	0	-1.422321	-1.019279	-0.074316	-1569	60	88
		-2.073366	0.028446	0.097352	110	183	230
	H	-0.824351	1.0859	0.108607	301	335	400
ma		2.030908	-0.094354	0.073561	487	617	828
$1S_{DHAT}$	Н	2.630072	0.273494	-0.799654	1080	1154	1212
	Н	2.469699	0.13950	1.076339	1590	1443	1491
		1.284066	-1.110284	-0.064274	1569	1059	2823
		0.020875	1.01822	0.034333	2692	3020	2020
		0.007033 1.000471	2.042033	-0.037430			
		1.009471	0.000310	0.005605			
<u> </u>	0	0.989098	-1.26043	0.017269	34	41	78
	0	2.136387	-0.605005	0.067525	99	136	158
	H	1.859173	0.347518	0.017206	187	226	257
	0	0.726267	1.738878	-0.165839	371	587	629
PC	H	0.704227	2.4904	0.435105	1214	1239	1263
	H	-0.140283	1.310035	-0.062034	1529	1577	1680
	C	-2.200225	-0.696878	-0.110888	1827	2891	2976
	0	-1.918961	0.442294	0.177177	3395	3738	3940
	H	-3.224749	-1.102946	0.078803			
	H	-1.459347	-1.389643	-0.572811			

 $Table \ S2: \ Termolecular \ rate \ constant \ (k_t) \ in \ cm^6 \ molecule^{-2} \ sec^{-1} \ for \ WM \ catalyzed \ reaction \ within \ temperature \ range \ (213 \ K \ - \ 900 \ K)$

Temp(K)		patl	1A Ar			path	В			path	D			patl	D	
	K_{eq1}	K_{eq2}	\mathbf{k}_{uni}	$ \mathbf{k}_t $	K_{eq1}	K_{eq2}	\mathbf{k}_{uni}	k,	\mathbf{K}_{eq1}	K_{eq2}	\mathbf{k}_{uni}	\mathbf{k}_t	K_{eq1}	K_{eq2}	\mathbf{k}_{uni}	\mathbf{k}_t
213	2.11×10^{-27}	4.39×10^{-19}	6.89×10^{7}	7.65×10^{-37}	3.26×10^{-22}	2.84×10^{-24}	6.89×10^{7}	7.65×10^{-37}	3.09×10^{-23}	2.99×10^{-23}	6.89×10^{7}	7.65×10^{-37}	3.09×10^{-23}	4.23×10^{-24}	1.98×10^{-9}	3.11×10^{-54}
216	2.11×10^{-27}	3.73×10^{-19}	7.45×10^7	7.02×10^{-37}	2.92×10^{-22}	$2.69\! imes\!10^{-24}$	7.45×10^{7}	7.03×10^{-37}	$3.12\! imes\!10^{-23}$	2.52×10^{-23}	7.45×10^{7}	7.02×10^{-37}	$3.12{ imes}10^{-23}$	$3.85\!\times\!10^{-24}$	3.12×10^{-9}	4.50×10^{-54}
219	2.11×10^{-27}	$3.18{\times}10^{-19}$	8.03×10^7	6.47×10^{-37}	2.63×10^{-22}	$2.55\!\times\!10^{-24}$	8.03×10^7	6.47×10^{-37}	3.14×10^{-23}	2.14×10^{-23}	8.03×10^{7}	6.47×10^{-37}	3.14×10^{-23}	$3.52\!\times\!10^{-24}$	4.89×10^{-9}	6.49×10^{-54}
224	2.12×10^{-27}	2.47×10^{-19}	9.07×10^7	5.68×10^{-37}	2.22×10^{-22}	$2.35\!\times\!10^{-24}$	9.07×10^7	$5.69{ imes}10^{-37}$	$3.19{ imes}10^{-23}$	1.64×10^{-23}	9.07×10^7	5.69×10^{-37}	$3.19{ imes}10^{-23}$	$3.04\! imes\!10^{-24}$	1.01×10^{-8}	$1.18{ imes}10^{-53}$
230	2.13×10^{-27}	$1.85\!\times\!10^{-19}$	1.04×10^{8}	4.91×10^{-37}	$1.84{ imes}10^{-22}$	2.14×10^{-24}	1.04×10^{8}	4.91×10^{-37}	3.24×10^{-23}	1.21×10^{-23}	1.04×10^{8}	4.92×10^{-37}	3.24×10^{-23}	2.58×10^{-24}	2.34×10^{-8}	2.35×10^{-53}
235	2.13×10^{-27}	1.47×10^{-19}	1.16×10^{8}	4.39×10^{-37}	1.58×10^{-22}	1.98×10^{-24}	1.16×10^{8}	4.38×10^{-37}	3.29×10^{-23}	9.54×10^{-24}	1.16×10^{8}	4.39×10^{-37}	3.29×10^{-23}	2.27×10^{-24}	4.58×10^{-8}	$4.10{ imes}10^{-53}$
250	2.15×10^{-27}	7.95×10^{-20}	1.58×10^{8}	3.24×10^{-37}	1.05×10^{-22}	1.62×10^{-24}	1.58×10^{8}	3.24×10^{-37}	3.45×10^{-23}	4.96×10^{-24}	1.58×10^{8}	3.24×10^{-37}	3.45×10^{-23}	$1.60\!\times\!10^{-24}$	2.99×10^{-7}	1.98×10^{-52}
259	2.16×10^{-27}	5.72×10^{-20}	1.86×10^{8}	2.77×10^{-37}	8.47×10^{-23}	1.46×10^{-24}	1.86×10^{8}	2.77×10^{-37}	3.55×10^{-23}	3.48×10^{-24}	1.86×10^{8}	2.77×10^{-37}	3.55×10^{-23}	1.33×10^{-24}	8.39×10^{-7}	4.74×10^{-52}
265	$2.17{ imes}10^{-27}$	$4.66\!\times\!10^{-20}$	2.07×10^{8}	2.51×10^{-37}	7.39×10^{-23}	$1.37 { imes} 10^{-24}$	2.07×10^{8}	2.51×10^{-37}	$3.63\!\times\!10^{-23}$	2.79×10^{-24}	$2.07{ imes}10^8$	2.51×10^{-37}	$3.63\!\times\!10^{-23}$	1.18×10^{-24}	$1.61\! imes\!10^{-6}$	8.28×10^{-52}
278	2.19×10^{-27}	3.10×10^{-20}	2.55×10^{8}	2.08×10^{-37}	5.65×10^{-23}	$1.20\! imes\!10^{-24}$	2.55×10^{8}	2.08×10^{-37}	3.79×10^{-23}	1.79×10^{-24}	2.55×10^{8}	2.08×10^{-37}	3.79×10^{-23}	9.39×10^{-25}	6.06×10^{-6}	2.59×10^{-51}
280	2.20×10^{-27}	2.93×10^{-20}	2.63×10^8	2.03×10^{-37}	5.44×10^{-23}	$1.18{ imes}10^{-24}$	2.63×10^{8}	2.03×10^{-37}	3.82×10^{-23}	1.68×10^{-24}	2.63×10^8	2.03×10^{-37}	3.82×10^{-23}	9.09×10^{-25}	7.35×10^{-6}	3.06×10^{-51}
290	2.21×10^{-27}	2.22×10^{-20}	3.05×10^{8}	1.79×10^{-37}	4.53×10^{-23}	1.08×10^{-24}	3.05×10^{8}	1.79×10^{-37}	4.05×10^{-23}	1.24×10^{-24}	3.05×10^{8}	1.84×10^{-37}	4.05×10^{-23}	7.78×10^{-25}	1.87×10^{-5}	7.05×10^{-51}
298	2.23×10^{-27}	1.80×10^{-20}	3.40×10^{8}	1.64×10^{-37}	3.95×10^{-23}	$1.02\!\times\!10^{-24}$	3.40×10^{8}	1.64×10^{-37}	4.07×10^{-23}	9.87×10^{-25}	3.40×10^{8}	1.64×10^{-37}	4.07×10^{-23}	6.94×10^{-25}	3.77×10^{-5}	1.28×10^{-50}
300	2.23×10^{-27}	1.72×10^{-20}	3.49×10^{8}	1.60×10^{-37}	3.82×10^{-23}	$1.00\!\times\!10^{-24}$	3.49×10^{8}	$1.60\!\times\!10^{-37}$	4.10×10^{-23}	9.34×10^{-25}	3.49×10^{8}	1.61×10^{-37}	$4.10{ imes}10^{-23}$	6.75×10^{-25}	4.47×10^{-5}	1.48×10^{-50}
310	2.25×10^{-27}	1.36×10^{-20}	3.97×10^{8}	1.45×10^{-37}	3.28×10^{-23}	9.32×10^{-25}	$3.97{ imes}10^8$	1.45×10^{-37}	4.25×10^{-23}	7.19×10^{-25}	3.97×10^{8}	1.45×10^{-37}	4.25×10^{-23}	5.93×10^{-25}	1.01×10^{-4}	$3.07{ imes}10^{-50}$
320	2.27×10^{-27}	1.09×10^{-20}	4.47×10^{8}	1.33×10^{-37}	2.84×10^{-23}	8.74×10^{-25}	4.47×10^{8}	1.33×10^{-37}	4.41×10^{-23}	5.64×10^{-25}	4.47×10^{8}	1.33×10^{-37}	4.41×10^{-23}	$5.26\! imes\!10^{-25}$	2.20×10^{-4}	6.11×10^{-50}
330	2.29×10^{-27}	8.96×10^{-21}	5.00×10^{8}	1.23×10^{-37}	2.49×10^{-23}	$8.24\! imes\!10^{-25}$	5.00×10^{8}	1.23×10^{-37}	4.57×10^{-23}	4.49×10^{-25}	5.00×10^{8}	1.23×10^{-37}	4.57×10^{-23}	4.71×10^{-25}	4.55×10^{-4}	$1.18{ imes}10^{-49}$
350	2.34×10^{-27}	6.28×10^{-21}	6.13×10^{8}	1.08×10^{-37}	1.98×10^{-23}	7.43×10^{-25}	6.13×10^{8}	1.08×10^{-37}	4.91×10^{-23}	2.99×10^{-25}	6.13×10^{8}	1.08×10^{-37}	4.91×10^{-23}	3.89×10^{-25}	1.74×10^{-3}	3.98×10^{-49}
375	2.40×10^{-27}	4.31×10^{-21}	7.67×10^{8}	9.52×10^{-38}	1.55×10^{-23}	$6.69\!\times\!10^{-25}$	7.67×10^{8}	9.52×10^{-38}	5.38×10^{-23}	1.93×10^{-25}	7.67×10^{8}	9.52×10^{-38}	5.38×10^{-23}	$3.18{ imes}10^{-25}$	7.70×10^{-3}	$1.58{ imes}10^{-48}$
400	2.47×10^{-27}	3.15×10^{-21}	9.32×10^{8}	8.70×10^{-38}	1.26×10^{-23}	$6.16\!\times\!10^{-25}$	9.32×10^{8}	8.70×10^{-38}	5.88×10^{-23}	1.32×10^{-25}	9.32×10^{8}	8.70×10^{-38}	5.88×10^{-23}	2.70×10^{-25}	2.87×10^{-2}	5.46×10^{-48}
425	2.54×10^{-27}	2.42×10^{-21}	1.11×10^{9}	8.18×10^{-38}	1.07×10^{-23}	5.78×10^{-25}	1.11×10^{9}	8.18×10^{-38}	6.42×10^{-23}	9.59×10^{-26}	1.11×10^{9}	8.18×10^{-38}	6.42×10^{-23}	$2.36\! imes\!10^{-25}$	9.29×10^{-2}	1.68×10^{-47}
450	2.62×10^{-27}	1.94×10^{-21}	1.29×10^{9}	7.86×10^{-38}	9.26×10^{-24}	5.49×10^{-25}	1.29×10^{9}	7.86×10^{-38}	6.99×10^{-23}	7.27×10^{-26}	1.29×10^{9}	7.86×10^{-38}	6.99×10^{-23}	2.11×10^{-25}	$2.67{ imes}10^{-1}$	4.71×10^{-47}
475	2.71×10^{-27}	$1.60\! imes\! 10^{-21}$	1.48×10^{9}	7.70×10^{-38}	8.23×10^{-24}	$5.28\! imes\!10^{-25}$	1.48×10^{9}	7.70×10^{-38}	$7.61\! imes\!10^{-23}$	5.71×10^{-26}	1.48×10^{9}	7.70×10^{-38}	7.61×10^{-23}	$1.92\!\times\!10^{-25}$	6.92×10^{-1}	1.22×10^{-46}
500	2.80×10^{-27}	$1.37 { imes} 10^{-21}$	1.67×10^{9}	7.65×10^{-38}	7.45×10^{-24}	$5.13{ imes}10^{-25}$	1.67×10^{9}	7.65×10^{-38}	8.26×10^{-23}	4.63×10^{-26}	1.67×10^{9}	7.65×10^{-38}	$8.26\! imes\!10^{-23}$	1.79×10^{-25}	1.65	2.92×10^{-46}
550	3.00×10^{-27}	1.06×10^{-21}	2.06×10^9	7.84×10^{-38}	6.40×10^{-24}	$4.95\!\times\!10^{-25}$	2.06×10^{9}	7.84×10^{-38}	9.68×10^{-23}	$3.27 imes 10^{-26}$	2.06×10^{9}	7.84×10^{-38}	9.68×10^{-23}	$1.60\!\times\!10^{-25}$	7.58	1.41×10^{-45}
009	3.21×10^{-27}	8.77×10^{-22}	2.46×10^{9}	8.32×10^{-38}	5.76×10^{-24}	4.89×10^{-25}	2.46×10^{9}	8.32×10^{-38}	1.13×10^{-22}	2.50×10^{-26}	2.46×10^{9}	8.31×10^{-38}	1.13×10^{-22}	1.49×10^{-25}	2.77×10^{1}	5.59×10^{-45}
650	3.44×10^{-27}	7.65×10^{-22}	2.86×10^9	9.04×10^{-38}	5.37×10^{-24}	4.91×10^{-25}	2.86×10^{9}	9.05×10^{-38}	1.30×10^{-22}	2.03×10^{-26}	2.86×10^{9}	9.04×10^{-38}	1.30×10^{-22}	1.43×10^{-25}	8.51×10^{1}	1.90×10^{-44}
700	3.70×10^{-27}	6.93×10^{-22}	3.26×10^{9}	1.00×10^{-37}	5.14×10^{-24}	4.99×10^{-25}	3.26×10^{9}	1.00×10^{-37}	1.49×10^{-22}	1.72×10^{-26}	3.26×10^{9}	1.00×10^{-37}	1.49×10^{-22}	1.41×10^{-25}	2.26×10^{2}	5.69×10^{-44}
725	3.83×10^{-27}	6.67×10^{-22}	3.45×10^{9}	1.06×10^{-37}	5.06×10^{-24}	$5.05\!\times\!10^{-25}$	3.45×10^{9}	1.06×10^{-37}	1.59×10^{-22}	1.61×10^{-26}	3.45×10^{9}	1.06×10^{-37}	1.59×10^{-22}	$1.40\! imes\!10^{-25}$	3.53×10^2	9.45×10^{-44}
775	4.11×10^{-27}	6.29×10^{-22}	3.84×10^{9}	1.19×10^{-37}	4.98×10^{-24}	$5.20\! imes\!10^{-25}$	3.84×10^{9}	1.19×10^{-37}	1.81×10^{-22}	1.43×10^{-26}	3.84×10^{9}	1.19×10^{-37}	1.81×10^{-22}	1.41×10^{-25}	7.96×10^{2}	2.43×10^{-43}
800	4.25×10^{-27}	6.16×10^{-22}	4.03×10^{9}	1.27×10^{-37}	4.96×10^{-24}	5.28×10^{-25}	4.03×10^{9}	1.27×10^{-37}	1.92×10^{-22}	1.36×10^{-26}	4.03×10^{9}	1.27×10^{-37}	1.92×10^{-22}	1.42×10^{-25}	1.15×10^{3}	3.78×10^{-43}
825	4.40×10^{-27}	6.06×10^{-22}	4.22×10^{9}	1.35×10^{-37}	4.96×10^{-24}	5.38×10^{-25}	4.22×10^{9}	1.35×10^{-37}	2.04×10^{-22}	1.31×10^{-26}	4.22×10^{9}	1.35×10^{-37}	2.04×10^{-22}	1.43×10^{-25}	1.64×10^{3}	5.76×10^{-43}
850	4.56×10^{-27}	5.98×10^{-22}	4.41×10^{9}	1.44×10^{-37}	4.97×10^{-24}	5.49×10^{-25}	4.41×10^{9}	1.44×10^{-37}	2.16×10^{-22}	1.26×10^{-26}	4.41×10^{9}	1.44×10^{-37}	2.16×10^{-22}	1.45×10^{-25}	2.30×10^{3}	8.62×10^{-43}
875	4.72×10^{-27}	5.92×10^{-22}	4.60×10^{9}	1.54×10^{-37}	4.99×10^{-24}	$5.60\! imes\!10^{-25}$	4.60×10^{9}	1.54×10^{-37}	2.29×10^{-22}	1.22×10^{-26}	4.60×10^{9}	1.54×10^{-37}	2.29×10^{-22}	1.47×10^{-25}	3.15×10^{3}	1.27×10^{-42}
006	4.88×10^{-27}	5.88×10^{-22}	4.78×10^{9}	1.65×10^{-37}	5.03×10^{-24}	$5.71\!\times\!10^{-25}$	4.78×10^{9}	1.65×10^{-37}	2.42×10^{-22}	1.18×10^{-26}	4.78×10^{9}	1.65×10^{-37}	$2.42\!\times\!10^{-22}$	1.49×10^{-25}	4.26×10^{3}	1.84×10^{-42}

Table S3: Absolute energies in hartree for all the species calculated at MN15L/aug-cc-pVTZ theory

Species	MN15L/aug-cc-pVTZ
M-O	-265.2150075
M-W	-191.3597637
O-W	-226.6140132
RC_{DHAT}	-341.5956539
RC_{SHAT}	-341.6002647
TS_{DHAT}	-341.5555252
TS_{SHAT}	-341.5942673
PC	-341.6543078

Table S4: Relative energies (ΔE_{WM}) including ZPE (kcal mol⁻¹) for the complexes of water catalyzed channels with respect to the isolated reactants at the MN15-L/aug-cc-pVTZ

complexes	ΔE_{WM}
M-O	0.54
M-W	-3.36
O-W	-0.37
RC_{DHAT}	-3.43
RC_{SHAT}	-5.29
TS_{DHAT}	20.11
TS_{SHAT}	-1.86
\mathbf{PC}	-37.78
product	-26.09

2 Post-CCSD(T) Calculations

Further to check the viability of energetics obtained at MN15-L/aug-cc-pVTZ theory, we have calculated the energies of some species using ab initio method. At first, we have performed the CCSD(T) single point calculations in conjunction with aug-cc-pVTZ and aug-cc-pVQZ basis sets considering the MN15-L/aug-cc-pVTZ geometry. Using these energies, we have extrapolated the energies to corresponding CBS limit using the method, proposed and developed by Varandas and Pansini.¹ The obtained CCSD(T)/CBS energies have been further improved by adding the following corrections.

1. The contribution of full triple excitations estimated at CCSDT/cc-pVDZ level of theory

using MRCC code.² Here the correction is denoted as ΔE_T .

$$\Delta E_T = [E_{CCSDT} - E_{CCSD(T)}]$$

2. The contribution of partial quadratic excitations have been estimated at CCSDT(Q)/ccpVDZ level of theory using MRCC code.² Here the correction is denoted as $\Delta E_{(Q)}$.

 $\Delta E_{(Q)} = [E_{CCSDT(Q)} - E_{CCSDT}]$

Table S5: Absolute energies (Hartree) for the TS_{SHAT} and isolated reactants at CCSD(T) level of theory.

Species	CCSD(T)/aug-cc-pVTZ	CCSD(T)/aug-cc-pVQZ	CCSD(T)/CBS
TS_{SHAT}	-341.3606506	-341.4485031	-341.5031767843
O_2	-114.8846772	-114.9135429	-114.9312154326
CH_3O^{\bullet}	-150.140951	-150.1786758	-150.2021958701
H_2O	-76.3423196	-76.3635505	-76.3768008477

Table S6: Absolute energies (Hartree) for the TS_{SHAT} and isolated reactants at post CCSD(T) level of theory.

Species	CCSD(T)/cc-pVDZ	CCSDT/cc-pVDZ	CCSDT(Q)/cc-pVDZ
TS_{SHAT}	-340.974295	-340.9836417801	-340.9914067017
O_2	-149.9856931155	-149.9858841529	-149.9877946909
CH_3O^{\bullet}	-114.7550722855	-114.7557353041	-114.7562151674
H_2O	-76.2411932234	-76.241357176	-76.2418487324

Table S7: Contribution from post-CCSD(T) corrections (kcal mol^{-1}) to the energy barrier for SHAT channel

Complexes	$\Delta E_{CCSD(T)/CBS}$	ΔE_T	$\Delta E_{(Q)}$	Final Barrier
CH ₃ O+O ₂ +H ₂ O	0.00	0.00	0.00	0.00
\mathbf{TS}_{SHAT}	4.41	-5.23	-3.06	-3.88

Temp(K)		SHAT			Γ	DHAT		
	TST	CVT	Γ	κ_{SCT}	TST	CVT	Γ	κ_{SCT}
213	3.89×10^{7}	3.77×10^{7}	0.97	1.97	7.75×10^{-15}	4.93×10^{-15}	0.64	4.02×10^{5}
216	4.29×10^{7}	$4.17{ imes}10^7$	0.97	1.93	1.63×10^{-14}	1.04×10^{-14}	0.64	$3.00{ imes}10^5$
219	4.71×10^{7}	4.58×10^{7}	0.97	1.90	3.37×10^{-14}	2.16×10^{-14}	0.64	$2.27{ imes}10^5$
224	5.47×10^{7}	$5.34{ imes}10^7$	0.98	1.84	1.08×10^{-13}	6.95×10^{-14}	0.65	$1.46{ imes}10^5$
230	6.49×10^{7}	6.35×10^{7}	0.98	1.78	4.06×10^{-13}	2.64×10^{-13}	0.65	8.89×10^{4}
235	7.42×10^{7}	7.28×10^{7}	0.98	1.74	1.17×10^{-12}	7.61×10^{-13}	0.65	6.04×10^4
250	1.07×10^{8}	1.06×10^{8}	0.99	1.62	2.12×10^{-11}	1.41×10^{-11}	0.66	2.13×10^4
259	1.31×10^{8}	1.30×10^{8}	0.99	1.57	1.03×10^{-10}	6.86×10^{-11}	0.67	$1.23{ imes}10^4$
265	1.48×10^{8}	1.47×10^{8}	0.99	1.54	2.77×10^{-10}	1.86×10^{-10}	0.67	8.70×10^{3}
278	1.90×10^{8}	1.89×10^{8}	0.99	1.48	2.04×10^{-9}	1.38×10^{-9}	0.68	4.40×10^{3}
280	1.97×10^{8}	1.96×10^{8}	0.99	1.47	2.73×10^{-9}	1.85×10^{-9}	0.68	3.99×10^{3}
290	2.35×10^{8}	2.34×10^{8}	1.00	1.43	1.10×10^{-8}	7.48×10^{-9}	0.68	2.50×10^{3}
298	2.67×10^{8}	2.66×10^{8}	1.00	1.40	3.12×10^{-8}	2.14×10^{-8}	0.69	1.77×10^{3}
300	2.75×10^{8}	2.75×10^{8}	1.00	1.39	4.01×10^{-8}	2.75×10^{-8}	0.69	1.63×10^{3}
310	3.20×10^{8}	3.19×10^{8}	1.00	1.36	1.35×10^{-7}	9.29×10^{-8}	0.69	1.10×10^{3}
320	3.67×10^{8}	3.67×10^{8}	1.00	1.34	4.19×10^{-7}	2.90×10^{-7}	0.69	7.59×10^{2}
330	4.18×10^{8}	4.18×10^{8}	1.00	1.31	1.21×10^{-6}	8.46×10^{-7}	0.70	5.40×10^{2}
350	5.28×10^8	5.28×10^{8}	1.00	1.27	8.47×10^{-6}	5.95×10^{-6}	0.70	2.93×10^{2}
375	6.82×10^8	6.82×10^{8}	1.00	1.23	7.15×10^{-5}	5.07×10^{-5}	0.71	1.52×10^{2}
400	8.51×10^8	8.50×10^{8}	1.00	1.20	4.60×10^{-4}	3.29×10^{-4}	0.72	8.75×10^{1}
425	1.03×10^9	1.03×10^{9}	1.00	1.18	2.37×10^{-3}	1.71×10^{-3}	0.72	5.45×10^{1}
450	1.22×10^9	1.22×10^{9}	1.00	1.16	1.02×10^{-2}	7.36×10^{-3}	0.72	3.63×10^{1}
475	1.42×10^9	1.42×10^{9}	1.00	1.14	3.73×10^{-2}	2.72×10^{-2}	0.73	2.55×10^{1}
500	1.63×10^9	1.62×10^{9}	0.99	1.12	1.20×10^{-1}	8.79×10^{-2}	0.73	1.88×10^{1}
550	2.05×10^9	2.04×10^{9}	0.99	1.10	9.03×10^{-1}	6.66×10^{-1}	0.74	1.14×10^{1}
600	2.49×10^{9}	2.46×10^{9}	0.99	1.08	4.84	3.60	0.74	7.73
650	2.93×10^{9}	2.88×10^{9}	0.98	1.07	2.01×10^{1}	1.50×10^{1}	0.75	5.69
700	3.36×10^9	3.30×10^9	0.98	1.06	6.78×10^{1}	5.08×10^{1}	0.75	4.46
725	3.58×10^9	3.51×10^{9}	0.98	1.06	1.17×10^{2}	8.79×10^{1}	0.75	4.02
775	4.01×10^9	3.92×10^{9}	0.98	1.05	3.15×10^2	2.37×10^{2}	0.75	3.37
800	4.22×10^9	4.12×10^{9}	0.98	1.05	4.92×10^{2}	3.71×10^{2}	0.75	3.12
825	4.42×10^{9}	4.32×10^{9}	0.98	1.04	7.50×10^{2}	5.66×10^{2}	0.75	2.91
850	4.63×10^{9}	4.52×10^{9}	0.98	1.04	1.12×10^{3}	8.43×10^2	0.76	2.73
875	4.83×10^{9}	4.71×10^{9}	0.97	1.04	1.62×10^{3}	1.23×10^{3}	0.76	2.57
900	5.04×10^{9}	4.91×10^{9}	0.97	1.04	2.31×10^{3}	1.75×10^{3}	0.76	2.44

Table S8: Ratio between CVT and TST (Γ) and tunneling coefficient (κ_{SCT}) for SHAT and DHAT path at various different temperatures.

Temp(K)		SH	IAT		DHAT	
	κ_{SCT}	κ_{ZCT}	κ_{Eckart}	κ_{SCT}	κ_{ZCT}	κ_{Eckart}
213	1.97	1.65	2.21	4.02×10^{5}	2.02×10^5	1.02×10^{6}
216	1.93	1.63	2.17	3.00×10^{5}	1.57×10^{5}	$5.80{ imes}10^5$
219	1.90	1.61	2.13	2.27×10^{5}	1.22×10^{5}	3.38×10^5
224	1.84	1.57	2.07	1.46×10^{5}	$8.25{ imes}10^4$	1.44×10^{5}
230	1.78	1.53	2.01	8.89×10^{4}	5.27×10^{4}	5.59×10^4
235	1.74	1.50	1.96	6.04×10^4	3.70×10^{4}	$2.69{ imes}10^4$
250	1.62	1.43	1.84	2.13×10^4	1.41×10^{4}	4.00×10^{3}
259	1.57	1.39	1.78	1.23×10^{4}	8.38×10^{3}	1.53×10^{3}
265	1.54	1.37	1.75	8.70×10^{3}	6.06×10^{3}	8.68×10^{2}
278	1.48	1.33	1.68	4.40×10^{3}	3.17×10^{3}	3.00×10^2
280	1.47	1.33	1.67	3.99×10^{3}	2.89×10^{3}	$2.59{ imes}10^2$
290	1.43	1.30	1.63	2.50×10^{3}	1.85×10^{3}	1.34×10^{2}
298	1.40	1.28	1.60	1.77×10^{3}	1.33×10^{3}	$8.54{ imes}10^1$
300	1.39	1.28	1.59	1.63×10^{3}	1.23×10^{3}	7.70×10^{1}
310	1.36	1.26	1.56	1.10×10^{3}	$8.38{ imes}10^2$	4.81×10^1
320	1.34	1.24	1.53	7.59×10^{2}	5.89×10^{2}	3.24×10^1
330	1.31	1.22	1.50	5.40×10^{2}	$4.24{ imes}10^2$	$2.31{ imes}10^1$
350	1.27	1.19	1.46	2.93×10^{2}	$2.35{ imes}10^2$	$1.36{ imes}10^1$
375	1.23	1.17	1.41	1.52×10^{2}	$1.25{ imes}10^2$	8.49
400	1.20	1.15	1.37	8.75×10^{1}	7.33×10^{1}	6.06
425	1.18	1.13	1.34	5.45×10^{1}	4.65×10^{1}	4.72
450	1.16	1.11	1.31	3.63×10^{1}	3.14×10^{1}	3.90
475	1.14	1.10	1.29	2.55×10^{1}	2.24×10^{1}	3.35
500	1.12	1.09	1.27	1.88×10^{1}	1.67×10^{1}	2.97
550	1.10	1.07	1.23	1.14×10^{1}	1.03×10^{1}	2.47
600	1.08	1.06	1.21	7.73	7.08	2.17
650	1.07	1.05	1.19	5.69	5.28	1.96
700	1.06	1.04	1.17	4.46	4.18	1.82
725	1.06	1.04	1.16	4.02	3.79	1.76
775	1.05	1.04	1.15	3.37	3.19	1.66
800	1.05	1.03	1.15	3.12	2.97	1.63
825	1.04	1.03	1.14	2.91	2.78	1.59
850	1.04	1.03	1.13	2.73	2.61	1.56
875	1.04	1.03	1.13	2.57	2.47	1.53
900	1.04	1.03	1.13	2.44	2.35	1.51

Table S9: Tunneling coefficient for SHAT and DHAT path at various different temperatures.

Table S10: Bimolecular rate constant values (k_{uncat} in (cm³ molecule⁻¹ s⁻¹) for uncatalyzed channel obtained at CVT/SCT, TST/ZCT and TST/Eckart method at various temperature range.

Temp (K)	CVT/SCT	TST/ZCT	TST/Eckart
213	5.63×10^{-16}	5.21×10^{-16}	3.26×10^{-16}
216	5.89×10^{-16}	5.48×10^{-16}	3.50×10^{-16}
219	6.16×10^{-16}	5.77×10^{-16}	3.75×10^{-16}
224	6.63×10^{-16}	6.28×10^{-16}	4.19×10^{-16}
230	7.23×10^{-16}	6.93×10^{-16}	4.77×10^{-16}
235	7.76×10^{-16}	7.51×10^{-16}	5.30×10^{-16}
250	9.55×10^{-16}	9.44×10^{-16}	7.09×10^{-16}
259	1.08×10^{-15}	1.08×10^{-15}	8.34×10^{-16}
265	1.16×10^{-15}	1.17×10^{-15}	9.24×10^{-16}
278	1.37×10^{-15}	1.39×10^{-15}	1.14×10^{-15}
280	1.41×10^{-15}	1.43×10^{-15}	1.18×10^{-15}
290	1.58×10^{-15}	1.62×10^{-15}	1.37×10^{-15}
298	1.74×10^{-15}	1.79×10^{-15}	1.53×10^{-15}
300	1.78×10^{-15}	1.83×10^{-15}	1.58×10^{-15}
310	$1.99{ imes}10^{-15}$	2.05×10^{-15}	1.80×10^{-15}
320	2.22×10^{-15}	2.30×10^{-15}	2.05×10^{-15}
330	2.46×10^{-15}	$2.56{\times}10^{-15}$	2.32×10^{-15}
350	3.01×10^{-15}	3.13×10^{-15}	2.91×10^{-15}
375	3.79×10^{-15}	3.95×10^{-15}	3.77×10^{-15}
400	4.69×10^{-15}	4.89×10^{-15}	4.77×10^{-15}
425	5.73×10^{-15}	5.96×10^{-15}	5.90×10^{-15}
450	6.89×10^{-15}	7.16×10^{-15}	7.19×10^{-15}
475	8.20×10^{-15}	8.50×10^{-15}	8.62×10^{-15}
500	9.65×10^{-15}	9.98×10^{-15}	1.02×10^{-14}
550	1.30×10^{-14}	1.34×10^{-14}	1.39×10^{-14}
600	1.70×10^{-14}	1.74×10^{-14}	1.82×10^{-14}
650	2.17×10^{-14}	2.22×10^{-14}	2.32×10^{-14}
700	2.71×10^{-14}	2.76×10^{-14}	2.91×10^{-14}
725	3.01×10^{-14}	3.06×10^{-14}	3.23×10^{-14}
775	3.67×10^{-14}	3.73×10^{-14}	3.93×10^{-14}
800	4.04×10^{-14}	4.09×10^{-14}	4.32×10^{-14}
825	4.42×10^{-14}	4.47×10^{-14}	4.73×10^{-14}
850	4.83×10^{-14}	4.88×10^{-14}	5.16×10^{-14}
875	5.25×10^{-14}	5.31×10^{-14}	5.61×10^{-14}
900	5.71×10^{-14}	5.76×10^{-14}	6.09×10^{-14}

References

- Varandas, A.; Pansini, F. Narrowing the error in electron correlation calculations by basis set re-hierarchization and use of the unified singlet and triplet electron-pair extrapolation scheme: Application to a test set of 106 systems. J. Chem. Phys. 2014, 141, 224113.
- (2) Kállay, M.; Rolik, Z.; Csontos, J.; Ladjánszki, I.; Szegedy, L.; Ladóczki, B.; Samu, G.; Petrov, K.; Farkas, M.; Nagy, P. et al. MRCC, a quantum chemical program suite. URL: http://www.mrcc. hu 2016,