Electronic Supplementary Information

In situ Reversible Redox Switching of First Hyperpolarizability of bimetallic Ruthenium complexes

Karthika C., Sarath Kumar S. R., Kathuria L., Das* P. K., and Samuelson A. G.,

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore

560012, India

Figure S1. (a)1H NMR of $Ru(acac)_2(CH_3CN)_2$, 1 and (b) $[(acac)_2Ru$ -bptz-Ru $(acac)_2$], 2 in CDCl₃

* Indicates a signal of water impurity.

(b)

Figure S3. Quadratic dependence of $I_{2\omega}$ on I_{ω} for complex **2** in CH₂Cl₂(6x10⁻⁵ M). The experimental data were fitted with the straight line of the form $\ln I_{2\omega}=\ln A+n \ln I_{\omega}$. Where $I_{2\omega}$ is the output power, I_{ω} is the input power, A is proportionality constant and n is the order of process. Here the value of n extracted from the fit is 2.03.

Figure S4. Wavelength scan of SHLS signal for complex 2 in CH_2Cl_2 (1x10⁻⁵ M, 10 mJ/ pulse)

Figure S5: XYZ coordinates of optimized geometries (a) monometallic, 1 and (b) bimetallic,

2

(a)

(b)

Mono, 1

	X	Y	Ζ
С	2.04467	1.80979	-0.71525
С	2.80037	1.51587	0.43409
С	2.50953	0.56032	1.42689
С	2.53195	2.90145	-1.6458
С	3.4579	0.42595	2.60164
0	0.96049	1.25139	-1.07626
0	1.51308	-0.2272	1.45685
Ru	0.00005	-0.2542	-0.00152
0	-0.9689	1.2397	1.08152
С	-2.05549	1.79507	0.72318
С	-2.54866	2.87857	1.66015
С	-2.8092	1.50419	-0.42822
С	-2.51374	0.55498	-1.42571
С	-3.46124	0.42211	-2.60134
0	-1.51369	-0.22782	-1.45936
Ν	1.01582	-1.66857	-1.06658
Ν	-1.00605	-1.68052	1.05725
С	1.58601	-2.45391	-1.6883
С	-1.56944	-2.47094	1.67873
С	2.30136	-3.44409	-2.47445
С	-2.27546	-3.46633	2.46675

Н	3.70098	2.09941	0.57826
Н	3.48429	3.32978	-1.33299
Н	2.63698	2.50248	-2.6585
Н	1.78578	3.70008	-1.69336
Н	4.31243	1.09929	2.53397
Н	2.91982	0.63224	3.53138
Н	3.82231	-0.60329	2.66495
Н	-1.80351	3.67741	1.71841
Н	-3.49987	3.30847	1.34608
Н	-2.65869	2.471	2.66893
Н	-3.71235	2.08443	-0.56972
Н	-4.31861	1.09155	-2.53078
Н	-2.9238	0.63495	-3.52998
Н	-3.82137	-0.60833	-2.66953
Н	2.94857	-2.95156	-3.20258
Н	2.91745	-4.06945	-1.82556
Н	1.59607	-4.0827	-3.00975
Н	-1.62454	-4.31914	2.66884
Н	-2.59359	-3.03646	3.41848
Н	-3.15797	-3.81871	1.9295

Bimetallic, 2

Ru	-3.35231 -0.06027 0.02414
Ru	3.35245 0.06017 0.02401
0	-5.42069 -0.3669 -0.18325
0	-3.18791 0.09827 -2.05444
0	-3.62665 -0.19586 2.08311
0	-3.77445 1.99473 0.06792
0	5.42074 0.36688 -0.18363
0	3.18777 -0.09896 -2.05445
0	3.62684 0.19633 2.083
0	3.77452 -1.99485 0.06838
Ν	-2.82662 -2.07367 -0.00035
Ν	-1.3617 0.08117 0.15476
Ν	-0.64572 1.20516 0.14208
Ν	0.64582 -1.20533 0.14218
Ν	1.36178 -0.08135 0.15479
Ν	2.82669 2.07354 -0.00076
С	-0.6669 -1.1049 0.13124
С	-1.49371 -2.31457 0.07893
С	-0.97149 -3.60461 0.10879
Н	0.10009 -3.74108 0.1691
С	-1.84815 -4.68147 0.06154

Н	-1.47072 -5.69689 0.08355
С	-3.21755 -4.43197 -0.00965
Н	-3.93564 -5.24216 -0.04281
С	-3.66822 -3.11828 -0.03728
Н	-4.72084 -2.87166 -0.08472
С	0.66699 1.10471 0.13118
С	1.49379 2.3144 0.07879
С	0.97152 3.60441 0.10891
Н	-0.10005 3.74081 0.16948
С	1.84811 4.68132 0.0616
Н	1.47065 5.69672 0.08384
С	3.21751 4.43187 -0.00992
Н	3.93556 5.24209 -0.04316
С	3.66822 3.11821 -0.03778
Н	4.72085 2.87166 -0.08545
С	-6.07017 -0.2899 -1.27533
С	-5.52424 -0.06997 -2.55194
Н	-6.22185 -0.03656 -3.37885
С	-4.16503 0.09935 -2.8702
С	-7.56703 -0.46832 -1.14077
Н	-7.78309 -1.4398 -0.68696
Н	-8.08848 -0.40168 -2.09557
Н	-7.96569 0.2943 -0.46579
С	-3.77444 0.30771 -4.31743
Н	-3.04682 -0.45239 -4.61474

Н	-3.28442 1.2795 -4.42603
Н	-4.62737 0.26594 -4.99461
С	-3.95571 0.7882 2.82709
С	-4.16731 2.11574 2.42479
Н	-4.4409 2.81493 3.20454
С	-4.07571 2.63872 1.11832
С	-4.1271 0.43204 4.28805
Н	-4.89686 -0.33846 4.38784
Н	-4.40445 1.28896 4.90162
Н	-3.19663 0.0061 4.67394
С	-4.35568 4.11166 0.90497
Н	-3.46459 4.59791 0.49747
Н	-4.64806 4.62437 1.82129
Н	-5.15063 4.22881 0.16352
C	6.07007 0.29007 -1.27579
C	5.52396 0.07014 -2.55235
Н	6.22145 0.03698 -3.37937
С	4.16479 -0.09969 -2.87039
C	7.56694 0.46856 -1.14144
Н	7.96599 -0.2953 -0.46809
Н	7.783 1.43918 -0.68584
Н	8.08806 0.40377 -2.09656
C	3.77401 -0.30818 -4.31754
Н	3.2841 -1.28004 -4.42604
Н	4.62683 -0.26632 -4.99485

Н	3.04624 0.45182 -4.61477
С	3.95589 -0.78753 2.82723
С	4.1673 -2.11522 2.4253
Н	4.44079 -2.81422 3.20526
С	4.07557 -2.63859 1.11901

- C 4.12774 -0.43093 4.28804
- H 3.19843 -0.00189 4.67328
- H 4.89984 0.33729 4.38762
- Н 4.40236 -1.28826 4.90226
- C 4.35493 -4.11171 0.90618
- Н 3.463 -4.59809 0.50067
- Н 4.6488 -4.62384 1.82236
- Н 5.1485 -4.22955 0.16338

Figure S6. Molecular orbitals involved in transitions of Ruthenium complexes obtained from TD-DFT calculations.

Complex	λ theory	oscillator	Transitions
	(nm)	strength	(% contributions)
1	310	0.0281	$HOMO \rightarrow LUMO$ (89)
1+	321	0.0038	HOMO-3(α) \rightarrow LUMO+2 (α) (48)
			$HOMO(\alpha) \rightarrow LUMO(\alpha) (34)$
			HOMO-2(α) \rightarrow LUMO+3(α) (17)
	528	0.65	$HOMO(\beta) \rightarrow LUMO(\beta) (91)$
2		0.438	$HOMO \rightarrow LUMO+1 (44)$
			HOMO \rightarrow LUMO (22)
			HOMO-2 →LUMO(20)
2+	632	0.362	HOMO-1(β) \rightarrow LUMO(β) (52)
			HOMO-1(α) \rightarrow LUMO(α) (42)
	1400	0.0154	HOMO LUMO(72)
22+	501	0.217	HOMO-3 (β) \rightarrow LUMO+3 (β) (39)
			HOMO-2(β) \rightarrow LUMO+1(β) (24.5)
			HOMO-2 (β) \rightarrow LUMO+4(β) (15)

Figure	S7 .	Molecular	orbitals	involved	in	major	contributing	transitions	of	Ruthenium
comple	xes o	btained from	n TD-DF	FT calculat	tior	IS.				

Complex	λ theory	Ground State	Excited State
	(nm)		
1	310		
	(π-π*)		
1+	319		
	(π-π*)		
	600 (LMCT)		
2	555 (MLCT)	÷ • • • • • • • • • • • • • • • • • • •	

2+	632 (MLCT)	
	1400 (IVCT)	
2 ²⁺	501 (LMCT)	

Figure S8.TD- DFT predicted frontier orbitals of complexes and their percentage composition

Figure S9. Peak current dependence on concentration of mononuclear Ru complex at 40 mV/s

Figure S10. Peak current dependence on square root of scan rate, υ of mononuclear Ru complex

Figure S11. Bulk electrolysis of complex, $1 (10^{-5} \text{ M})$ at 0.35 V for 30 minutes

Figure S12. Concentration dependence studies of (a) Complex 1^+ (b) Complex 2^+ (c) Complex 2^{2+}

(c) Complex 2^{2+}