Structural, phonon and optical properties of [CH3NH3]M0.5CrxAl0.5-x(HCOO)3 (M=Na, K; x=0, 0.025, 0.5) metal-organic framework perovskites for luminescence thermometry

by Maciej Ptak,a Błażej Dziuk,b Dagmara Stefańskaa and Krzysztof Hermanowicza

Fig. S1. The DSC traces for the MeANaCr crystals measured in the 140–300 K (blue line) and 250–440 K (red line) ranges at a rate of 5 °C min⁻¹ under a nitrogen atmosphere.

Fig. S2. Experimental (e) and simulated (s) powder XRD based on the single-crystal data for all studied perovskites. The simulated pattern for MeANaAI (s*) is taken from literature.¹

Fig. S3. Asymmetric part of unit cell for MeANaCr at (a) 295 K and (b) 100 K. Displacement ellipsoids are drawn at the 50% probability level.

Fig. S4. Packing diagrams for MeANaCr at (a) 295 K and (b) 100 K. Displacement ellipsoids are drawn at the 50% probability level.

Fig. S5. Asymmetric part of unit cell for MeAKCr at (a) 293 K and (b) 100 K. Displacement ellipsoids are drawn at the 50% probability level.

Fig. S6. Packing diagrams for MeAKCr at (a) 293 K and (b) 100 K. Displacement ellipsoids are drawn at the 50% probability level.

Fig. S7. Asymmetric part of unit cell for MeAKAI at (a) 293 K and (b) 100 K. Displacement ellipsoids are drawn at the 50% probability level.

Fig. S8. Packing diagrams for MeAKAI at (a) 293 K and (b) 100 K. Displacement ellipsoids are drawn at the 50% probability level.

Fig. S9. The energy of band gaps for investigated compounds determined using Kubelka-Munk function.

Fig. S10. The temperature-dependent emission spectra of (a) MeANaCr, (b) MeANaAlCr, (c) MeAKCr and (d) MeAKAlCr recorded under 450 nm excitation line in the range of 77 to 400 K.

Fig. S11. The temperature dependents of R-lines positions in investigated compounds.

Crystal data	MeA	NaCr	MeA	KAI	MeA	KCr
Chemical	(CH ₃ NH ₃) ₂ N	laCr(HCOO) ₆	(CH ₃ NH ₃) ₂ K	AI(HCOO) ₆	(CH ₃ NH ₃) ₂ K	Cr(HCOO) ₆
formula	(0 0)2	(),	(0 0/2	(0 0)2 ()0		()0
М	40	9.23	400	.32	425	.34
Crystal	Monocli	nic, <i>P</i> 2₁/ <i>n</i>	Monoclin	ic, <i>P</i> 2₁/ <i>n</i>	Monoclin	ic, <i>P</i> 2₁/ <i>n</i>
system, sg						
Temperature	295(2)	100.0(1)	293(2)	100.0(1)	293(2)	100.0(1)
(K)						
a, b, c (Å)	8.0317(4),	7.9504(9),	8.1644(8),	8.1568(4),	8.2054(9),	8.1907(5),
	8.7854(5),	8.7582(10),	9.0972(10),	9.0289(4),	9.1089(13),	9.0549(7),
	11.9391(7)	11.8530(14)	12.2715(13)	12.2380(6)	12.3423(15)	12.2909(8)
α, β, γ (°)	90.000(0),	90.000,	90.000(0),	90.000,	90.000,	90.000,
	90.923(5),	90.989(10),	90.289(10),	90.509(4),	90.377(10),	90.410(6),
	90.000(0)	90.0Ò0	90.000(0)	90.000	90.0Ò0	90.000
V (Å ³)	842.33(8)	825.22(16)	911.43(17)	901.26(7)	922.5(2)	911.54(11)
Z	()	2	2	2	2	<u>)</u>
Radiation type	M	οΚα	Мо	Κα	Мо	Κα
µ (mm⁻¹)	0.77	0.78	0.40	0.40	0.90	0.91
Crystal size	0.20 × 0.	.20 × 0.10	0.20 × 0.2	20 × 0.10	0.20 × 0.2	20 × 0.10
(mm)						
Data collection						
No. of	5502,	5450, 1614,	5975, 1773,	5822,	5947, 1798,	5936,
measured,	1629, 1056	1066	720	1741, 1234	922	1779, 992
independent						
and observed						
[<i>I</i> >2σ(<i>I</i>)]						
reflections						
R _{int}	0.043	0.051	0.144	0.048	0.098	0.083
$(\sin\theta/\lambda_{max})$	0.0	617	0.616	0.617	0.6	17
			Refinement			
$R[F^2>2\sigma(F^2)],$	0.033,	0.033,	0.061,	0.037,	0.065,	0.044,
$wR(F^2)$, S	0.065, 0.86	0.068, 0.86	0.153, 0.91	0.083, 0.87	0.131, 1.11	0.086, 0.97
No. of	1629	1614	1773	1741	1798	1779
reflections						
No. of	1	14	11	4	11	4
parameters						
H-atom	H aton	ns treated by a	mixture of inde	pendent and c	onstrained refir	nement
treatment		j -			-	
$\Delta \rho_{max}, \Delta \rho_{min}(e \text{\AA}^{-3})$	0.18, -0.27	0.28, -0.40	0.31, -0.28	0.33, -0.31	0.35, -0.45	0.35, -0.52

Tab.	S1.	Crystallogr	aphic de	etails of	MeANaCr,	MeAKCr	and MeAK	Al at roo	om-tempe	rature a	ind 10)0 K.
		, ,			,							

Tab. S2. The parameters of selected HBs created between the MeA⁺ cation and metal-formate framework for studied MOFs at room temperature and at 100 K (in square brackets). Data for MeANaAI are taken from literature¹ and refer to single crystal data at room temperature and at 180 K (at square brackets).

	<i>D</i> —H…A	<i>D</i> —H (Å)	H…A (Å)	<i>D</i> …A (Å)	<i>D</i> —H⋯A (°)		
MeAN	aCr						
	N1—H1A…O2	0.89 [0.89]	2.00 [1.96]	2.862(3) [2.832(3)]	164.2 [165.4]		
NaO_6	N1—H1B…O4 ⁱ	0.89 [0.89]	1.99 [1.99]	2.875(3) [2.877(3)]	173.6 [172.2]		
	N1—H1C⋯O6 ⁱⁱ	0.89 [0.89]	2.09 [2.01]	2.940(3) [2.884(3)]	160.3 [165.7]		
CrO ₆	N1—H1C⋯O5 ⁱⁱ	0.89 [0.89]	2.36 [2.41]	3.097(3) [3.104(3)]	140.7 [135.5]		
MeAK	MeAKCr						

		N1—H1B⋯O2 ⁱⁱ	0.89 [0.89]	1.95 [1.95]	2.828(6) [2.821(4)]	167.1 [167.3]
	KO ₆	N1—H1A⋯O6 ⁱ	0.89 [0.89]	1.95 [1.94]	2.832(6) [2.833(4)]	172.2 [176.9]
		N1—H1C⋯O4	0.89 [0.89]	1.95 [1.92]	2.820(5) [2.795(4)]	166.8 [166.5]
	CrO ₆	N1—H1C…O3	0.89 (0.89)	2.57 [2.58]	3.273(6) [3.283(4)]	136.9 [136.1]
-	MeNaA] 1				
		N1—H6…O2	0.91 [0.89]	1.99 [1.96]	2.8577(16) [2.8454(17)]	163.0 [163.5]
	NaO ₆	N1—H4…O5	0.91 [0.89]	1.97 [1.95]	2.8544(16) [2.8520(19)]	174.5 [174.5]
		N1—H5…O4	0.91 [0.89]	2.04 [1.99]	2.9035(17) [2.8748(18)]	161.7 [163.9]
_	AIO ₆	N1—H5…O3	0.91 [0.89]	2.42 [2.42]	3.1444(16) [3.1453(18)]	139.3 [136.7]
	MeAKA	J				
		N1—H1B…O6 ^v	0.89 [0.89]	1.96 [1.95]	2.832(6) [2.822(3)]	166.4 [167.5]
	KO ₆	N1—H1A…O4 ^{iv}	0.89 [0.89]	1.93 [1.93]	2.823(6) [2.822(3)]	175.9 [175.3]
		N1—H1C…O2	0.89 [0.89]	1.94 [1.93]	2.810(6) [2.801(3)]	165.2 [167.2]
_	AIO ₆	N1—H1B…O1	0.89 [0.89]	2.61 [2.63]	3.331(6) [3.342(3)]	138.7 [137.2]
Symm	netry cod	e(s): (i) -x+1, -y+	1, −z+1; (ii) −:	x+2, −y, −z+1	l; (iv) -x+3/2, y-1/2, -z+1/2	2; (v) -x+1, -y, -z+1.

Tab. S3. Selected geometric parameters (Å, $^\circ)$ for MeANaCr at 295 and 100 K.

Cr1—05	1.9695 (15)	Na1—O2 ⁱⁱⁱ	2.4162 (17)
Cr1—O5 ⁱ	1.9695 (15)	Na1—O2 ^{iv}	2.4162 (17)
Cr1—O3 ⁱ	1.9738 (16)	Na1—O4 ^v	2.4614 (17)
Cr1—O3	1.9738 (16)	Na1—O4 ^{vi}	2.4614 (17)
Cr1—O1 ⁱ	1.9740 (16)	C3—O6	1.209 (3)
Cr1—01	1.9740 (16)	C3—O5	1.263 (3)
O1—C1	1.261 (3)	C3—H3	0.9300
N1—C4	1.452 (4)	O3—C2	1.254 (3)
N1—H1A	0.8900	C2—O4	1.227 (3)
N1—H1B	0.8900	C2—H2	0.9300
N1—H1C	0.8900	O2—Na1 ^{vii}	2.4162 (17)
C1—O2	1.226 (3)	O4—Na1 ^{viii}	2.4614 (17)
C1—H1	0.9300	C4—H4A	0.9600
Na1—O6 ⁱⁱ	2.3944 (17)	C4—H4B	0.9600
Na1—O6	2.3944 (17)	C4—H4C	0.9600
O5—Cr1—O5 ⁱ	180.0	O6—Na1—O2 ^{iv}	87.39 (6)
O5—Cr1—O3 ⁱ	88.63 (6)	O2 ⁱⁱⁱ —Na1—O2 ^{iv}	180.0 `´
O5 ⁱ —Cr1—O3 ⁱ	91.37 (6)	O6 ⁱⁱ —Na1—O4 ^v	91.63 (6)
O5—Cr1—O3	91.37 (6)	O6—Na1—O4 ^v	88.37 (6)
O5 ⁱ —Cr1—O3	88.63 (6)	O2 [™] —Na1—O4	86.73 (6)
O3 ⁱ —Cr1—O3	180.0	O2 ^{iv} —Na1—O4 ^v	93.27 (6)
O5—Cr1—O1 ⁱ	88.91 (6)	O6 ⁱⁱ —Na1—O4 ^{vi}	88.37 (6)
05 ⁱ —Cr1—O1 ⁱ	91.09 (6)	O6—Na1—O4 ^{vi}	91.63 (6)
O3 ⁱ —Cr1—O1 ⁱ	90.93 (7)	02 ⁱⁱⁱ —Na1—O4 ^{vi}	93.26 (6)
O3—Cr1—O1 ⁱ	89.07 (7)	O2 ^{iv} —Na1—O4 ^{vi}	86.74 (6)
O5—Cr1—O1	91.09 (6)	04v—Na1—O4vi	180.0 `´
O5 ⁱ —Cr1—O1	88.91 (6)	O6—C3—O5	125.1 (3)
O3 ⁱ —Cr1—O1	89.07 (7)	O6—C3—H3	117.5
O3—Cr1—O1	90.93 (7)	O5—C3—H3	117.5
01 ⁱ —Cr1—O1	180.0	C2-03-Cr1	126.70 (17)
C1-01-Cr1	126.74 (16)	O4—C2—O3	126.2 (3)
C4—N1—H1A	109.5 ´´	O4—C2—H2	116.9 ໌
C4—N1—H1B	109.5	O3—C2—H2	116.9
H1A—N1—H1B	109.5	C1—O2—Na1 ^{vii}	116.46 (16)
C4—N1—H1C	109.5	C2—O4—Na1viii	114.86 (18)
H1A—N1—H1C	109.5	N1—C4—H4A	109.5
H1B—N1—H1C	109.5	N1—C4—H4B	109.5
O2—C1—O1	124.6 (2)	H4A—C4—H4B	109.5
O2-C1-H1	117.7	N1—C4—H4C	109.5
O1—C1—H1	117.7	H4A—C4—H4C	109.5
06 ⁱⁱ —Na1—O6	180.0	H4B—C4—H4C	109.5
06 ⁱⁱ —Na1—O2 ⁱⁱⁱ	87.39 (6)	C3—O6—Na1	116.73 (18)
O6—Na1—O2 [™]	92.61 (6)	C3—O5—Cr1	127.66 (17)

O6 ⁱⁱ —Na1—O2 ^{iv}	92.61 (6)		
Cr1-01-C1-02	-176.10 (19)	O3—C2—O4—Na1viii	170.6 (2)
Cr1-03-C2-04	176.1 (2)	O5—C3—O6—Na1	179.7 (2)
O1—C1—O2—Na1vii	179.82 (19)	O6—C3—O5—Cr1	176.2 (2)

+1; Syn (vi)

01-03-02-04	170.1(2)	00-00-1101	113.1 (2)
O1—C1—O2—Na1vii	179.82 (19)	O6—C3—O5—Cr1	176.2 (2)
ymmetry code(s): (i) -x+1, -y+1,	-z+1; (ii) -x+2, -y, -z+1; (i	ii) x+1/2, -y+1/2, z+1/2; (iv) -x+3/2,	y-1/2, -z+1/2; (v) -x+1, -y, -z+
· · · · · · · · · · · · · · · · · · ·			

O1—C1—O2—Na1 ^{vii}	179.82 (19)	O6—C3—O5—Cr1	176.2 (2)
mmetry code(s): (i) -x+1, -y+1,	, -z+1; (ii) -x+2, -y, -z+1; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+3/2,	y-1/2, -z+1/2; (v) -x+1,

ry	/ code(s): (i) -x+1, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+3/2, y-1/2, -z-	+1
y	∕, z; (vii) −x+3/2, y+1/2, −z+1/2; (viii) x−1, y, z.	

01—C1—O2—Na1 ^{vii}	179.82 (19)	O6-C3-O5-Cr1	176.2 (2)
vmmetry code(s): (i) $-x+1$, $-y+1$,	-z+1; (ii) -x+2, -y, -z+1; (iii) x+1/2, -y+1/2, z+1/2; (iv) -x+3/2	, y-1/2, -z+1/2; (v) -x+1, -y, -z-
i) x+1, v, z: (vii) -x+3/2, v+1/2, -z	z+1/2: (viii) x−1. v. z.		

Cr1—O5'	1.9708 (17)	Na1—O4 ^{vi}	2.4469 (18)
Cr1—05	1.9708 (17)	Na1—O4 ^{vii}	2,4469 (18)
Cr1 O3	1 07/3 (17)	No1 C3	3 000 (3)
	1.9743 (17)		3.099 (3)
Cr1—O3 ⁱ	1.9743 (17)	Na1—C3 [⊪]	3.099 (3)
Cr1—01	1.9770 (17)	Na1—C1 ^v	3.126 (3)
Cr101i	1 0770 (17)		3 126 (3)
	1.9770 (17)		3.120 (3)
O1—C1	1.270 (3)	C3—O6	1.223 (3)
N1—C4	1.467 (3)	C3—O5	1.265 (3)
N1_H1A	0.8000	C3H3	ດ ຊາດດັ່
	0.0000	00-110	4.070 (0)
NI-HIB	0.8900	03-02	1.272 (3)
N1—H1C	0.8900	C2—O4	1.227 (3)
C1—O2	1 232 (3)	C2—H2	0 9300
	2 106 (2)	02 No1i	2,2005(10)
	3.120 (3)	Oz—Na I"	2.3925 (16)
C1—H1	0.9300	O4—Na1™	2.4469 (18)
Na1—O6 ⁱⁱⁱ	2.3725 (18)	C4—H4A	0.9600
Na1_06	2 3725 (18)	CA_HAB	0.9600
	2.3723 (10)		0.3000
Na1—O2 ^w	2.3925 (18)	C4—H4C	0.9600
Na1—O2 ^v	2.3925 (18)		
05i Cr1 -05	180.0 `´	$O4^{vi}$ Na1 $C3$	107 88 (7)
	00.06 (7)		70 10 (7)
	00.90 (7)	04"—Na1—03	12.12(1)
05—Cr1—O3	91.04 (7)	06 ^m —Na1—C3 ^m	20.89 (7)
O5 ⁱ —Cr1—O3 ⁱ	91.04 (7)	O6—Na1—C3 ⁱⁱⁱ	159.11 (7)
05-0r1-03i	88.06 (7)		70 17 (7)
			10.11(1)
03—Cr1—O3'	180.0	O2 ^v —Na1—C3 [™]	100.83 (7)
05 ⁱ —Cr1—O1	88.81 (7)	O4vi—Na1—C3iii	72.12 (7)
05-Cr1-01	01 10 (7)		107.88 (7)
	00.04(7)		107.00 (7)
03-0r1-01	90.94 (7)	C3—Na1—C3	180.0
O3 ⁱ —Cr1—O1	89.06 (7)	O6 ⁱⁱⁱ —Na1—C1 [∨]	77.14 (7)
05 ⁱ —Cr1—O1 ⁱ	91 19 (7)	06—Na1—C1 ^v	102 86 (7)
OE Cr1 O1	00 01 (7)	O2iy No1 $C1y$	150 15 (6)
05-01-01	00.01(7)		159.15 (6)
O3—Cr1—O1'	89.06 (7)	O2 ^v —Na1—C1 ^v	20.85 (6)
O3 ⁱ —Cr1—O1 ⁱ	90.94 (7)	O4 ^{vi} —Na1—C1 ^v	107.28 (7)
01-Cr1-01i	180.0		72 72 (7)
	100.0		12.12(1)
C1	125.60 (17)	C3—Na1—C1*	90.18 (7)
C4—N1—H1A	109.5	C3 [⊪] —Na1—C1 [∨]	89.82 (7)
C4—N1—H1B	109.5	06 ⁱⁱⁱ —Na1—C1 ⁱ ⊻	102 86 (7)
	100.5		77 14 (7)
	109.5		77.14(7)
C4—N1—H1C	109.5	O2™—Na1—C1™	20.85 (6)
H1A—N1—H1C	109.5	O2 ^v —Na1—C1 ^{iv}	159.15 (6)
H1B $N1$ $H1C$	109.5		72 72 (7)
	103.5		12.12(1)
02-01-01	124.0 (3)	04 ^v "—Na1—C1 ^v	107.28 (7)
O2—C1—Na1 ⁱⁱ	43.73 (13)	C3—Na1—C1 ⁱ ⊻	89.82 (7)
01—01—Na1 ⁱⁱ	167 69 (19)	C3 ⁱⁱⁱ —Na1—C1 ⁱ ⊻	90 18 (7)
	1100		100 000 (17)
	110.0		100.000 (17)
01—C1—H1	118.0	06—C3—O5	123.9 (3)
Na1 ⁱⁱ —C1—H1	74.3	O6—C3—Na1	43.78 (13)
06 ⁱⁱⁱ —Na1—06	180 0	05_C3_Na1	167 7 (2)
	00.00		140.0
06"—Na1—02"	86.86 (7)	06—03—H3	118.0
O6—Na1—O2 ⁱ v	93.14 (7)	O5—C3—H3	118.0
06 ⁱⁱⁱ —Na1—02 ^v	93 14 (7)	Na1—C3—H3	74.3
06 - Na1 - 02	86 86 (7)	C_{2} C_{3} C_{r1}	125 10 (18)
00—INA 1—02	00.00(7)	02-03-011	125.10(16)
O2 ^w —Na1—O2 ^v	180.0	O4—C2—O3	124.6 (3)
O6 ⁱⁱⁱ —Na1—O4 ^{vi}	91.86 (6)	O4—C2—H2	117.7
06—Na1—04vi	88 14 (6)	O3_C2_H2	117 7
			117.7
02"—INa I—04"	00.28 (0)		115.42 (17)
O2 ^v —Na1—O4 ^{vi}	93.72 (6)	C2—O4—Na1 ^{viii}	113.48 (18)
06 ⁱⁱⁱ —Na1—O4 ^{vii}	88.14 (6)	N1—C4—H4A	109.5
	01.86 (6)	N1 C4 H4P	100.5
			109.0
02 ^w —Na1—O4 ^w	93.72 (6)	Н4А—С4—Н4В	109.5
O2 ^v —Na1—O4 ^{vii}	86.28 (6)	N1—C4—H4C	109.5
	180 0	H4A - C4 - H4C	109.5
	150.0		100.0
00"-Na1-03	159.11 (7)	H4B	109.5
06—Na1—C3	20.89 (7)	C3—O6—Na1	115.34 (18)
O2 ^{iv} —Na1—C3	100.83 (7)	C3—O5—Cr1	126.85 (18)

O2 ^v —Na1—C3	79.17 (7)		
Cr1-01-C1-02	-175.23 (19)	O3—C2—O4—Na1viii	170.8 (2)
Cr1—O1—C1—Na1 ⁱⁱ	-171.4 (7)	O5—C3—O6—Na1	179.7 (2)
Cr1—O3—C2—O4	174.73 (19)	O6—C3—O5—Cr1	175.2 (2)
01—C1—O2—Na1 ⁱⁱ	178.8 (2)	Na1—C3—O5—Cr1	176.1 (8)

Symmetry code(s): (i) -x+1, -y+1, -z+1; (ii) -x+3/2, y+1/2, -z+1/2; (iii) -x+2, -y, -z+1; (iv) x+1/2, -y+1/2, z+1/2; (v) -x+3/2, y-1/2, -z+1/2; (v) -x+1, -y, -z+1; (vi) x+1, y, z; (vii) x-1, y, z.

The Cr–O distances are in the 1.9708(17)–1.9770(17) Å range, while Na–O in the 2.3725(18)–2.4469(18) Å range (1.9695(15)–1.9740(16) Å and 2.3944(17)–2.4614(17) Å for room temperature structure, respectively). Taking into account the valence angles, the O–Cr–O ones involving oxygen atoms *cis* to each other range from 88.96(7)° to 91.19(7)°, while those located *trans* amount to 180.0° (88.63(6)° to 91.37(6) and 180° for room temperature structure). The octahedral geometry of the NaO₆ moiety is more distorted as the O–Na–O angles involving oxygen atoms mutually *cis* range from 86.28(6)° to 93.72(6)°, while those located trans amount to 180° (86.73(6)° to 93.27(6) and 180° for room temperature structure).

	Tab. S	S4. Selected	geometric	parameters	(Å, '	°) for	MeAKCr	at 293	and	100 K
--	--------	--------------	-----------	------------	-------	--------	--------	--------	-----	-------

293 K

Cr1—O3 ⁱ	1.961 (3)	K1—C1 ^v	3.413 (6)
Cr1—O3	1.961 (3)	K1—C3 ^{vii}	3.413 (6)
Cr1—O5 ⁱ	1.970 (3)	K1—C3 ^{vi}	3.413 (6)
Cr1—05	1.970 (3)	N1—C4	1.451 (8)
Cr1—O1	1.971 (3)	N1—H1A	0.8900
Cr1—O1 ⁱ	1.971 (3)	N1—H1B	0.8900
O1—C1	1.257 (6)	N1—H1C	0.8900
C1—O2	1.227 (6)	O3—C2	1.254 (6)
C1—K1 ⁱⁱ	3.413 (6)	C3—O6	1.228 (6)
C1—H1	0.9300	C3—O5	1.257 (6)
K1—O4 ⁱⁱⁱ	2.691 (4)	C3—K1 ^{viii}	3.413 (6)
K1—O4	2.691 (4)	C3—H3	0.9300
K1—O2 ^{iv}	2.711 (4)	C2—O4	1.220 (6)
K1—O2 ^v	2.711 (4)	C2—H2	0.9300
K1—O6 ^{vi}	2.747 (4)	O2—K1"	2.712 (4)
K1—O6 ^{vii}	2.747 (4)	C4—H4A	0.9600
K1—C2	3.375 (6)	C4—H4B	0.9600
K1—C2 ^{III}	3.375 (6)	C4—H4C	0.9600
K1—C1 ^{iv}	3.413 (6)	O6—K1 ^{viii}	2.747 (4)
O3 ⁱ —Cr1—O3	180.0	O4—K1—C1 ^v	77.85 (13)
O3 ⁱ —Cr1—O5 ⁱ	88.41 (14)	O2 ^{iv} —K1—C1 ^v	160.96 (11)
O3—Cr1—O5 ⁱ	91.59 (14)	O2 ^v —K1—C1 ^v	19.04 (11)
O3 ⁱ —Cr1—O5	91.59 (14)	O6 ^{vi} —K1—C1 ^v	104.48 (13)
O3—Cr1—O5	88.41 (14)	O6 ^{vii} —K1—C1 ^v	75.52 (13)
05 ⁱ —Cr1—O5	180.0	C2—K1—C1 ^v	88.95 (15)
O3 ⁱ —Cr1—O1	91.43 (14)	C2 ⁱⁱⁱ —K1—C1 ^v	91.05 (15)
O3—Cr1—O1	88.57 (14)	C1 ^{iv} —K1—C1 ^v	180.0
05 ⁱ —Cr1—O1	88.91 (14)	O4 ⁱⁱⁱ —K1—C3 ^{vii}	99.05 (13)
O5—Cr1—O1	91.09 (14)	O4—K1—C3 ^{vii}	80.95 (13)
O3 ⁱ —Cr1—O1 ⁱ	88.57 (14)	O2 ^{iv} —K1—C3 ^{vii}	75.15 (13)
O3—Cr1—O1 ⁱ	91.43 (14)	O2 ^v —K1—C3 ^{vii}	104.85 (13)
O5 ⁱ —Cr1—O1 ⁱ	91.09 (14)	O6 ^{vi} —K1—C3 ^{vii}	160.60 (12)
O5—Cr1—O1 ⁱ	88.91 (14)	O6 ^{vii} —K1—C3 ^{vii}	19.40 (12)
01—Cr1—O1 ⁱ	180.0	C2—K1—C3 ^{vii}	96.55 (15)
C1-01-Cr1	126.8 (3)	C2 ⁱⁱⁱ —K1—C3 ^{vii}	83.45 (15)
O2—C1—O1	125.6 (5)	C1 ^{iv} —K1—C3 ^{vii}	89.54 (14)
O2—C1—K1 ⁱⁱ	46.2 (3)	C1 ^v —K1—C3 ^{vii}	90.46 (14)
O1—C1—K1 ⁱⁱ	171.7 (4)	O4 ⁱⁱⁱ —K1—C3 ^{vi}	80.95 (13)
O2—C1—H1	117.2	O4—K1—C3 ^{vi}	99.05 (13)
O1—C1—H1	117.2	O2 ^{iv} —K1—C3 ^{vi}	104.85 (13)

1

K1 ⁱⁱ —C1—H1	71.1	O2 ^v —K1—C3 ^{vi}	75.15 (13)
O4 ⁱⁱⁱ —K1—O4	180.0	O6 ^{vi} —K1—C3 ^{vi}	19.40 (12)
04 ⁱⁱⁱ —K1—O2 ^{iv}	92.53 (13)	O6 ^{vii} —K1—C3 ^{vi}	160.60 (12)
O4—K1—O2 ^{iv}	87.47 (13)	C2—K1—C3 ^{vi}	83.45 (15)
04 ⁱⁱⁱ —K1—O2 ^v	87.47 (13)	C2 ⁱⁱⁱ —K1—C3 ^{vi}	96.55 (15)
O4—K1—O2 ^v	92.53 (13)	C1 ^{iv} —K1—C3 ^{vi}	90.46 (14)
O2 ^{iv} —K1—O2 ^v	180.0	C1 ^v —K1—C3 ^{vi}	89.54 (14)
O4 ⁱⁱⁱ —K1—O6 ^{vi}	89.95 (12)	C3 ^{vii} —K1—C3 ^{vi}	180.0 (2)
O4—K1—O6 ^{vi}	90.05 (12)	C4—N1—H1A	109.5
O2 ^{iv} —K1—O6 ^{vi}	87.39 (13)	C4—N1—H1B	109.5
O2 ^v —K1—O6 ^{vi}	92.61 (13)	H1A—N1—H1B	109.5
04 ⁱⁱⁱ —K1—O6 ^{vii}	90.05 (12)	C4—N1—H1C	109.5
04—K1—O6 ^{vii}	89.95 (12)	H1A—N1—H1C	109.5
02 ^{iv} —K1—O6 ^{vii}	92.61 (13)	H1B—N1—H1C	109.5
O2 ^v —K1—O6 ^{vii}	87.39 (13)	C2	127.1 (4)
06 ^{vi} —K1—O6 ^{vii}	180.0	O6—C3—O5	126.4 (6)
O4 ⁱⁱⁱ —K1—C2	160.71 (12)	O6—C3—K1 ^{viii}	48.0 (3)
O4—K1—C2	19.29 (12)	O5—C3—K1 ^{viii}	167.5 (4)
O2 ^{iv} —K1—C2	80.56 (14)	O6—C3—H3	116.8
O2 ^v —K1—C2	99.44 (14)	O5—C3—H3	116.8
O6 ^{vi} —K1—C2	71.87 (14)	K1 ^{viii} —C3—H3	70.1
O6 ^{vii} —K1—C2	108.13 (14)	O4—C2—O3	125.0 (6)
O4 ⁱⁱⁱ —K1—C2 ⁱⁱⁱ	19.29 (12)	O4—C2—K1	46.8 (3)
O4—K1—C2 ⁱⁱⁱ	160.71 (12)	O3—C2—K1	171.7 (4)
O2 ^{iv} —K1—C2 ⁱⁱⁱ	99.44 (14)	O4—C2—H2	117.5
O2 ^v —K1—C2 ⁱⁱⁱ	80.56 (14)	O3—C2—H2	117.5
06 ^{vi} —K1—C2 ⁱⁱⁱ	108.13 (14)	K1—C2—H2	70.7
O6 ^{vii} —K1—C2 ⁱⁱⁱ	71.87 (14)	C1—O2—K1 ⁱⁱ	114.8 (3)
C2—K1—C2 ⁱⁱⁱ	180.0	N1—C4—H4A	109.5
O4 ⁱⁱⁱ —K1—C1 ⁱ [∨]	77.85 (13)	N1—C4—H4B	109.5
O4—K1—C1 ^{iv}	102.15 (13)	H4A—C4—H4B	109.5
O2 ^{iv} —K1—C1 ^{iv}	19.04 (11)	N1—C4—H4C	109.5
O2v—K1—C1 ^{iv}	160.96 (11)	H4A—C4—H4C	109.5
06 ^{vi} —K1—C1 ^{iv}	75.52 (13)	H4B—C4—H4C	109.5
O6 ^{vii} —K1—C1 ^{iv}	104.48 (13)	C2—O4—K1	113.9 (4)
C2—K1—C1 ^{iv}	91.05 (15)	C3—O6—K1 ^{viii}	112.6 (4)
C2 ⁱⁱⁱ —K1—C1 ^{iv}	88.95 (15)	C3—O5—Cr1	126.5 (4)
O4 ⁱⁱⁱ —K1—C1 ^v	102.15 (13)		
Cr1-01-C1-02	178.5 (4)	O5—C3—O6—K1 ^{viii}	-165.6 (5)
Cr1-03-C2-04	175.7 (5)	O6—C3—O5—Cr1	-176.7 (4)
O1—C1—O2—K1 ⁱⁱ	-179.5 (4)	K1 ^{viii} —C3—O5—Cr1	124.7 (18)
O3—C2—O4—K1	178.3 (5)		

Symmetry code(s): (i) -x+1, -y+1, -z+1; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x, -y, -z+1; (iv) x-1/2, -y+1/2, z+1/2; (v) -x+1/2, y-1/2, z+1/2; (v) -x+1/2; y-1/2, z+1/2; (v) -x+1/2; y-1/2; z+1/2; (v) -x+1/2; y-1/2; z+1/2; (v) -x+1/2; z+1/2; z

Cr1—O3 ⁱ	1.965 (2)	K1—C1 ^v	3.399 (4)	
Cr1—O3	1.965 (2)	K1—C3 ^{vii}	3.399 (4)	
Cr1—O1 ⁱ	1.969 (2)	K1—C3 ^{vi}	3.399 (4)	
Cr1—01	1.969 (2)	N1—C4	1.476 (5)	
Cr1—O5 ⁱ	1.973 (2)	N1—H1A	0.8900	
Cr1—O5	1.973 (2)	N1—H1B	0.8900	
01—C1	1.267 (4)	N1—H1C	0.8900	
C1—O2	1.232 (4)	O3—C2	1.269 (4)	
C1—K1 ⁱⁱ	3.399 (4)	C3—O6	1.229 (4)	
C1—H1	0.9300	C3—O5	1.261 (4)	
K1—O4	2.677 (3)	C3—K1 ^{viii}	3.399 (4)	
K1—O4 ⁱⁱⁱ	2.677 (3)	C3—H3	0.9300	
K1—O2 ^{iv}	2.705 (3)	C2—O4	1.232 (4)	
K1—O2 ^v	2.705 (3)	C2—H2	0.9300	
K1—O6 ^{vi}	2.742 (3)	O2—K1"	2.705 (3)	
K1—O6 ^{vii}	2.742 (3)	C4—H4A	0.9600	

K1—C2	3.346 (4)	C4—H4B	0.9600
K1—C2 ⁱⁱⁱ	3.346 (4)	C4—H4C	0.9600
K1—C1 ^{iv}	3.399 (4)	O6—K1 ^{viii}	2.742 (3)
O3 ⁱ —Cr1—O3	180.0	O4 [™] —K1—C1 [∨]	102.26 (9)
03 ⁱ —Cr1—O1 ⁱ	88.60 (9)	O2 ^{iv} —K1—C1 ^v	160.67 (7)
O3—Cr1—O1 ⁱ	91.40 (9)	O2 ^v —K1—C1 ^v	19.33 (7)
O3 ⁱ —Cr1—O1	91.40 (9)	06 ^{vi} —K1—C1 ^v	104.70 (9)
O3—Cr1—O1	88.60 (9)	O6 ^{vii} —K1—C1 ^v	75.30 (9)
01 ⁱ —Cr1—O1	180.0	C2—K1—C1 ^v	89.24 (10)
O3 ⁱ —Cr1—O5 ⁱ	88.65 (10)	C2 ⁱⁱⁱ —K1—C1 ^v	90.76 (10)
O3—Cr1—O5 ⁱ	91.35 (10)	C1 ^{iv} —K1—C1 ^v	180.0
01 ⁱ —Cr1—O5 ⁱ	91.12 (10)	O4—K1—C3 ^{vii}	80.19 (9)
O1—Cr1—O5 ⁱ	88.88 (10)	O4 ⁱⁱⁱ —K1—C3 ^{vii}	99.81 (9)
O3 ⁱ —Cr1—O5	91.35 (10)	O2 ^{iv} —K1—C3 ^{vii}	75.37 (9)
O3—Cr1—O5	88.65 (10)	O2 ^v —K1—C3 ^{vii}	104.63 (9)
01 ⁱ —Cr1—O5	88.88 (10)	O6 ^{vi} —K1—C3 ^{vii}	160.42 (8)
O1—Cr1—O5	91.12 (10)	O6 ^{vii} —K1—C3 ^{vii}	19.58 (8)
05 ⁱ —Cr1—O5	180.0	C2—K1—C3 ^{vii}	96.37 (10)
C1	125.5 (2)	C2 ⁱⁱⁱ —K1—C3 ^{vii}	83.63 (10)
02—C1—O1	124.6 (3)	C1 ^{iv} —K1—C3 ^{vii}	90.01 (10)
02—C1—K1 ⁱⁱ	46.61 (18)	C1 ^v —K1—C3 ^{vii}	89.99 (10)
01—C1—K1 ⁱⁱ	171.0 (3)	O4—K1—C3 ^{vi}	99.81 (9)
O2-C1-H1	117.7	O4 ⁱⁱⁱ —K1—C3 ^{vi}	80.19 (9)
O1—C1—H1	117.7	O2 ^{iv} —K1—C3 ^{vi}	104.63 (9)
K1 ^{II} —C1—H1	71.1	O2 ^v —K1—C3 ^{vi}	75.37 (9)
04—K1—O4 ⁱⁱⁱ	180.0	06 ^{vi} —K1—C3 ^{vi}	19.58 (8)
O4—K1—O2 ^{iv}	87.23 (8)	06 ^{vii} —K1—C3 ^{vi}	160.42 (8)
04 ⁱⁱⁱ —K1—O2 ^{iv}	92.77 (8)	C2—K1—C3 ^{vi}	83.63 (10)
O4—K1—O2 ^v	92.77 (8)	C2 ⁱⁱⁱ —K1—C3 ^{vi}	96.37 (10)
04 ⁱⁱⁱ —K1—O2 ^v	87.23 (8)	C1 ^{iv} —K1—C3 ^{vi}	89.99 (10)
02 ^{iv} —K1—O2 ^v	180.0	C1 ^v —K1—C3 ^{vi}	90.01 (10)
O4—K1—O6 ^{vi}	90.20 (8)	C3 ^{vii} —K1—C3 ^{vi}	180.00 (13)
O4 ⁱⁱⁱ —K1—O6 ^{vi}	89.80 (8)	C4—N1—H1A	109.5
O2 ^{iv} —K1—O6 ^{vi}	87.24 (8)	C4—N1—H1B	109.5
02 ^v —K1—06 ^{vi}	92.76 (8)	H1A—N1—H1B	109.5
04—K1—06 ^{vii}	89.80 (8)	C4—N1—H1C	109.5
04"-K1-06 ^v	90.20 (8)	H1A—N1—H1C	109.5
02 [™] —K1—O6 [™]	92.76 (8)	H1B—N1—H1C	109.5
02 ^v —K1—06 ^v	87.24 (8)	C2—O3—Cr1	126.1 (2)
06 ^v —K1—06 ^v	180.0	06-03-05	125.9 (4)
U4—K1—C2	19.92 (8)	05 00 K1	48.4 (2)
	160.08 (8)	05-03-K1***	166.8 (3)
02^{10} - K1 - C2	80.11 (9)	06-03-H3	117.1
	99.89 (9)		70.4
	7 1.40 (9) 109 60 (0)	K1 ^{***} —C3—H3	/U.1 102.6 (4)
	100.00 (9)	04 - 02 - 03	123.0 (4)
$04-K1-C2^{m}$	100.07 (0)	04 - 02 - K1	47.0 (<i>Z</i>)
	19.93(0)	03 - 02 - 12	110.9 (3)
$O_2 = K_1 = O_2$	99.09 (9) 80.11 (0)		110.2
	108 60 (9)	K1_C2_H2	70.5
	71 /0 (9)	(1 - 02 - 12)	11/ 1 (2)
C2K1C2	180.0	N1 - C4 - H4A	109.5
02 - K1 - 02	102.26 (9)	N1_C4_H4B	109.5
O4 ⁱⁱⁱ —K1—C1 ⁱ ⊻	77 74 (9)	H4A—C4—H4B	109.5
$O2^{iv}$ K1—C1 ^{iv}	19 33 (7)	N1—C4—H4C	109.5
$O2^{v}$ K1 $-C1^{iv}$	160 67 (7)	H4A - C4 - H4C	109.5
$O6^{vi}$ K1 $C1^{iv}$	75 30 (9)	H4B-C4-H4C	109.5
	104 70 (9)	C2—O4—K1	112 3 (2)
C2—K1—C1 ^{iv}	90 76 (10)	C3—O6—K1 ^{viii}	112 0 (3)
C2 ⁱⁱⁱ —K1—C1 ^{iv}	89 24 (10)	C3—O5—Cr1	125 2 (2)
04—K1—C1 ^v	77 74 (9)		(_)
$Cr1_01_02$	177 6 (3)		-164 7 (3)
01-01-02		00 00-00-iti	107.7 (0)

Cr1-03-C2-04	175.4 (3)	O6—C3—O5—Cr1	-173.8 (3)
01—C1—O2—K1 ⁱⁱ	-177.4 (3)	K1 ^{viii} —C3—O5—Cr1	126.4 (11)
O3—C2—O4—K1	176.1 (3)		
Symmetry code(s): (i) $-x+1$,	, -y+1, -z+1; (ii) -x+1/2, y+1/2	2, -z+1/2; (iii) -x, -y, -z+1; (iv) x-	1/2, $-y+1/2$, $z+1/2$; (v) $-x+1/2$, $y-1/2$,
-z+1/2; (vi) $-x$, $-y+1$, $-z+1$;	(vii) x, y−1, z; (viii) x, y+1, z.		

The Cr–O distances are slightly shorter in comparison to MeANaCr and range from 1.965(2) to 1.973(2) Å, while the K–O distances are as expected much longer and range from 2.677(3) to 2.742(3) Å (1.961(3)– 1.971(3) Å and 2.691(4)–2.747(4) Å for room temperature structure, respectively). Taking into account the valence angles, the O–Cr–O angles involving oxygen atoms *cis* to each other range from 88.65(10)° to 91.40(9)°, while those located *trans* are equal to 180° (88.41(14)° to 91.59(14) and 180° for room temperature structure). The octahedral geometry of the KO₆ moiety is more distorted as the O–K–O angles involving oxygen atoms 7.23(8)° to 92.77(8)°, while those located *trans* amount to 180° (87.39(13)° to 92.61(13) and 180° for room temperature structure).

Tab. S5. Selected geometric parameters (Å, °) for MeAKAI at 293 and 100 K.

K1—O2	2.691 (4)	O1—Al1	1.885 (4)
K1—O2 ⁱ	2.691 (4)	AI1—O1 ^{vi}	1.885 (4)
K1—O4 ⁱⁱ	2.717 (4)	AI1—O3 ^{vi}	1.890 (3)
K1—O4 ⁱⁱⁱ	2.717 (4)	AI1—O3	1.890 (3)
K1—O6 ^{iv}	2.748 (4)	AI1—O5 ^{vi}	1.898 (3)
K1—O6 ^v	2.748 (4)	Al1—05	1.898 (3)
K1—C1 ⁱ	3.382 (7)	O3—C2	1.256 (6)
K1—C1	3.382 (7)	C3—O6	1.235 (6)
K1—C2 ⁱⁱ	3.405 (6)	C3—O5	1.250 (7)
K1—C2 ⁱⁱⁱ	3.405 (6)	C3—K1 ^{vii}	3.416 (7)
K1—C3 ^{iv}	3.416 (7)	C3—H3	0.9300
K1—C3 ^v	3.416 (7)	C2—O4	1.221 (6)
N1—C4	1.468 (7)	C2—K1 ^{viii}	3.405 (6)
N1—H1A	0.8900	C2—H2	0.9300
N1—H1B	0.8900	O4—K1 ^{viii}	2.717 (4)
N1—H1C	0.8900	C4—H4A	0.9600
C1—O2	1.229 (6)	C4—H4B	0.9600
C1—O1	1.247 (7)	C4—H4C	0.9600
C1—H1	0.9300	06—K1 ^{vii}	2.748 (4)
O2—K1—O2 ⁱ	180.00 (9)	O6 ^{iv} —K1—C3 ^v	160.48 (12)
02—K1—O4 ⁱⁱ	92.45 (14)	O6 ^v —K1—C3 ^v	19.52 (12)
O2 ⁱ —K1—O4 ⁱⁱ	87.55 (14)	C1 ⁱ —K1—C3 ^v	96.94 (16)
O2—K1—O4 [™]	87.55 (14)	C1—K1—C3 ^v	83.06 (16)
O2 ⁱ —K1—O4 ⁱⁱⁱ	92.45 (14)	C2 ⁱⁱ —K1—C3 ^v	89.48 (15)
O4"—K1—O4"	180.0	C2 ⁱⁱⁱ —K1—C3 ^v	90.52 (15)
O2—K1—O6 ^{iv}	90.31 (13)	C3 ^{iv} —K1—C3 ^v	180.0
O2 ⁱ —K1—O6 ^{iv}	89.69 (13)	C4—N1—H1A	109.5
O4 ⁱⁱ —K1—O6 ^{iv}	87.61 (13)	C4—N1—H1B	109.5
04 ⁱⁱⁱ —K1—O6 ^{iv}	92.39 (13)	H1A—N1—H1B	109.5
O2—K1—O6 ^v	89.69 (13)	C4—N1—H1C	109.5
O2 ⁱ —K1—O6 ^v	90.31 (13)	H1A—N1—H1C	109.5
O4 ⁱⁱ —K1—O6 ^v	92.39 (13)	H1B—N1—H1C	109.5
O4 ⁱⁱⁱ —K1—O6 ^v	87.61 (13)	O2-C1-O1	125.9 (6)
06 ^{iv} —K1—O6 ^v	180.0	O2—C1—K1	46.6 (3)
O2—K1—C1 ⁱ	160.61 (13)	O1—C1—K1	172.5 (5)
O2 ⁱ —K1—C1 ⁱ	19.39 (13)	O2-C1-H1	117.1
O4 ⁱⁱ —K1—C1 ⁱ	80.70 (14)	O1—C1—H1	117.1
O4 ⁱⁱⁱ —K1—C1 ⁱ	99.30 (14)	K1—C1—H1	70.4

O6 ^{iv} —K1—C1 ⁱ	71.40 (15)	C1—O1—Al1	130.1 (4)
O6 ^v —K1—C1 ⁱ	108.60 (15)	O1—AI1—O1 ^{vi}	180.0
O2—K1—C1	19.39 (13)	O1—Al1—O3 ^{vi}	88.85 (15)
O2 ⁱ —K1—C1	160.61 (13)	O1 ^{vi} —AI1—O3 ^{vi}	91.15 (15)
O4 ⁱⁱ —K1—C1	99.30 (14)	O1—Al1—O3	91.15 (15)
O4 [™] —K1—C1	80.70 (14)	01 ^{vi} —Al1—O3	88.85 (15)
O6 ^{iv} —K1—C1	108.60 (15)	03 ^{vi} —Al1—O3	180.0
O6 ^v —K1—C1	71.40 (15)	O1—AI1—O5 ^{vi}	88.72 (15)
C1 ⁱ —K1—C1	180.0	O1 ^{vi} —AI1—O5 ^{vi}	91.28 (15)
02—K1—C2 ⁱⁱ	78.01 (14)	O3 ^{vi} —AI1—O5 ^{vi}	90.94 (16)
02 ⁱ —K1—C2 ⁱⁱ	101.99 (14)	03—AI1—O5 ^{vi}	89.06 (16)
O4"—K1—C2"	19.10 (11)	01—Al1—05	91.28 (15)
O4"-K1-C2"	160.90 (12)	01 ^{vi} —AI1—O5	88.72 (15)
O6 ^{iv} —K1—C2 ⁱⁱ	75.45 (14)	03 ^{vi} —Al1—O5	89.06 (16)
06 ^v —K1—C2 ^{II}	104.55 (14)	03—Al1—O5	90.94 (16)
C1'—K1—C2"	90.81 (15)	O5 ^{vi} —Al1—O5	180.00 (19)
C1—K1—C2"	89.19 (15)	C2	129.6 (4)
O2—K1—C2 [™]	101.99 (14)	06	126.9 (6)
O2 ⁱ —K1—C2 ⁱⁱⁱ	78.01 (14)	06—C3—K1 [™]	48.0 (3)
04"—K1—C2"	160.90 (12)	O5—C3—K1 [™]	168.5 (4)
04 ^m —K1—C2 ^m	19.10 (11)	06—C3—H3	116.6
O6 [™] —K1—C2 [™]	104.55 (14)	05—C3—H3	116.6
	75.45 (14)	K1 [™] —C3—H3	69.6
C1'—K1—C2'''	89.19 (15)	C1	114.0 (4)
C1—K1—C2 ^{III}	90.81 (15)		126.0 (6)
	180.0	04—C2—K1 ¹¹¹¹	46.7 (3)
$02-K1-C3^{W}$	81.27 (14)	03	1/2.7 (4)
	98.73 (14)	04—02—H2	117.0
	105.18 (14)		70.2
04^{m} K1 C3W	74.82 (14) 10.52 (12)	KT™—HZ	/U.3 120.2 (4)
	19.52 (12)		129.3 (4)
	100.40 (12)	C2	114.2 (4)
$C1 \times 1 - C3^{iv}$	05.00 (10)	N1 = C4 = H4R	109.5
$C^{ii} K^{1} C^{ii}$	90.94 (10)		109.5
$C2^{ii} K1 C3^{ii}$	90.52 (15)		109.5
$C_2 = K_1 = C_3^{*}$	09.40 (13)		109.5
02 - 10 - 03	90.73 (14) 81 27 (14)		109.5
$02 - K1 - C3^{\vee}$	74 82 (14)		109.5 112 A (A)
O4 —K1—C3 ^v	105 18 (14)	03-00-1(1	112.4 (4)
	176 6 (F)	Al1 02 02 04	177 0 (4)
02-01-01	-1/0.0 (3) 152 4 (5)	AII = 03 = 02 = 04	177.0 (4) -176.0 (5)
C1 = 01 = A11 = 03	-26.6 (5)		-170.9(3)
C1 - O1 - AI1 - O5	-20.0 (5) 62 5 (5)	1 - 03 - 03 - 41	-327(5)
C1 - O1 - AI1 - O5	-117 5 (5)	01 - A1 - 03 - 03	147 3 (5)
01 - 41 - 03 - 02	-128 7 (5)	01 03 - 03	56 1 (5)
01^{vi} Al1 -03^{-02}	51 3 (5)	03 - 41 - 05 - 03	-123 9 (5)
05^{vi} Al1 -03 -02	142.6 (5)	03-C2-O4-K1 ^{viii}	-179.0 (5)
05 - A = 0.05 - 0.05	-37.4 (5)	05-03-06-K1 ^{vii}	-166 6 (5)
01-02-K1	-179 2 (5)		100.0 (0)
100K			
	2 6812 (18)	02-01	1 235 (3)
K1—02	2.6813 (18)	03-02	1.264 (3)
K1—Q6 [×]	2 7045 (17)	04-02	1 236 (3)
K1—06 ^{×i}	2.7045 (17)	04—K1 ^{xiv}	2.7414 (18)
K1—O4 ^{×ii}	2.7414 (18)	O5—C3	1.266 (3)
K1—O4× ⁱⁱⁱ	2.7414 (18)	O6—C3	1.236 (3)
K1—C1 ^{ix}	3.353 (3)	O6—K1 ^{×v}	2.7044 (17)
K1—C1	3.353 (3)	N1—C4	1.477 (4)
K1—C3 [×]	3.392 (3)	N1—H1A	0.8900
K1—C3 ^{xi}	3.392 (3)	N1—H1B	0.8900
К1—С2 ^{хіі}	3.395 (3)	N1—H1C	0.8900
K1—C2 ^{xiii}	3.395 (3)	C1—H1	0.9300

Al1—O1	1.8888 (16)	C2—K1 ^{xiv}	3.395 (3)
Al1—O1 ^{vi}	1.8888 (16)	C2—H2	0.9300
Al1—O5 ^{vi}	1.8973 (16)	C3—K1 ^{xv}	3.392 (3)
Al1—O5	1.8973 (16)	C3—H3	0.9300
Al1—O3 ^{vi}	1.9011 (16)	C4—H4A	0.9600
Al1—O3	1.9011 (16)	C4—H4B	0.9600
01—C1	1.261 (3)	C4—H4C	0.9600
O2 ^{ix} —K1—O2	180.0	O4 ^{xii} —K1—C2 ^{xiii}	160.21 (6)
O2 ^{ix} —K1—O6 ^x	92.76 (6)	O4 ^{xiii} —K1—C2 ^{xiii}	19.79 (6)
O2—K1—O6×	87.24 (6)	C1 ^{ix} —K1—C2 ^{xiii}	96.61 (6)
O2 ^{ix} —K1—O6 ^{xi}	87.24 (6)	C1—K1—C2 ^{xiii}	83.39 (6)
O2—K1—O6 ^{xi}	92.76 (6)	C3 ^x —K1—C2 ^{xiii}	90.23 (6)
06 ^x —K1—O6 ^{xi}	180.0	C3 ^{xi} —K1—C2 ^{xiii}	89.77 (6)
O2 ^{ix} —K1—O4 ^{xii}	89.89 (6)	C2 ^{xii} —K1—C2 ^{xiii}	180.00 (9)
02—K1—O4 ^{xii}	90.11 (6)	01—AI1—O1 ^{vi}	180.0
06 ^x —K1—O4 ^{xii}	92.50 (6)	01—AI1—O5 ^{vi}	91.11 (7)
O6 ^{xi} —K1—O4 ^{xii}	87.50 (6)	01 ^{vi} —AI1—05 ^{vi}	88.89 (7)
O2 ^{ix} —K1—O4 ^{xiii}	90.11 (6)	01—Al1—O5	88.89 (7)
02—K1—O4× ⁱⁱⁱ	89.89 (6)	01 ^{vi} —Al1—O5	91.11 (7)
O6 ^x —K1—O4 ^{xiii}	87.50 (6)	05 ^{vi} —Al1—O5	180.0
06 ^{xi} —K1—O4 ^{xiii}	92.50 (6)	01—Al1—O3 ^{vi}	91.20 (7)
04 ^{xii} —K1—O4 ^{xiii}	180.0	01 ^{vi} —AI1—O3 ^{vi}	88.80 (7)
02 ^{ix} —K1—C1 ^{ix}	19.91 (6)	05 ^{vi} —Al1—O3 ^{vi}	91.01 (7)
O2—K1—C1 [™]	160.09 (6)	O5—Al1—O3 [™]	88.99 (7)
06×—K1—C1 [™]	99.90 (6)	01—Al1—03	88.80 (7)
06 ^{xi} —K1—C1 ^{ix}	80.10 (6)	O1 [™] —Al1—O3	91.20 (7)
	71.15 (6)	05 ^{vi} —Al1—O3	88.99 (7)
$O4^{\text{xm}}$ K1—C1 ^x	108.85 (6)	05—Al1—O3	91.01 (7)
02 ^k —K1—C1	160.09 (6)	03 ^{vi} —Al1—O3	180.00 (6)
02—K1—C1	19.91 (6)	C1—O1—Al1	128.80 (17)
	80.10 (6)	C1—O2—K1	112.42 (17)
	99.90 (6)	$C_2 = O_3 = A_1^2$	127.26 (17)
	108.85 (0)	$C_2 = O_4 = K_1^{AV}$	111.50 (17)
	71.15 (0)	C3	128.20 (16)
	180.0	$C_3 = O_0 = K_1^{A_1}$	113.46 (15)
$O2^{-}$ K1 $O2^{+}$	102 20 (C)		109.5
$O_2 - K_1 - C_3^{\circ}$	102.20 (0)		109.5
	19.03 (0) 160.47 (5)		109.5
00 - K1 - C3	100.47 (5)	$H_1 = H_1 = H_1 C$	109.5
O4 = 1(1 = 03)	75 24 (6)	H1B_N1_H1C	109.5
$C_1 \times K_1 - C_3 $	89.41 (6)	$0^{2}-0^{1}-0^{1}$	124 3 (2)
$C1 - K1 - C3^{\times}$	90.59 (6)	02-01-01	47 66 (13)
$O2^{ix}$ K1—C3 ^{xi}	102 20 (6)	01-C1-K1	171 78 (19)
$O2-K1-C3^{xi}$	77 80 (6)	02—C1—H1	117.8
$O6^{x}$ K1—C3 ^{xi}	160.47 (5)	01—C1—H1	117.8
$O6^{xi}$ K1—C3 ^{xi}	19.53 (5)	K1—C1—H1	70.2
04 ^{xii} —K1—C3 ^{xi}	75.24 (6)	O4—C2—O3	125.4 (3)
O4 ^{xiii} —K1—C3 ^{xi}	104.76 (6)	O4—C2—K1 ^{xiv}	48.71 (13)
C1 ^{ix} —K1—C3 ^{xi}	90.59 (6)	O3—C2—K1 ^{xiv}	166.89 (18)
C1—K1—C3 ^{xi}	89.41 (6)	O4—C2—H2	117.3
C3 ^x —K1—C3 ^{xi}	180.0	O3—C2—H2	117.3
O2 ^{ix} —K1—C2 ^{xii}	99.43 (6)	K1 ^{xiv} —C2—H2	70.0
O2—K1—C2 ^{xii}	80.57 (6)	O6—C3—O5	125.1 (2)
O6×—K1—C2 ^{xii}	74.83 (6)	O6—C3—K1 ^{xv}	47.01 (12)
O6 ^{xi} —K1—C2 ^{xii}	105.17 (6)	O5—C3—K1 ^{xv}	171.78 (18)
O4 ^{xii} —K1—C2 ^{xii}	19.79 (6)	O6—C3—H3	117.5
O4 ^{xiii} —K1—C2 ^{xii}	160.21 (6)	O5—C3—H3	117.5
C1 ^{ix} —K1—C2 ^{xii}	83.39 (6)	K1 ^{xv} —C3—H3	70.5
C1—K1—C2 ^{xii}	96.61 (6)	N1—C4—H4A	109.5
C3 ^x —K1—C2 ^{xii}	89.77 (6)	N1—C4—H4B	109.5
C3 ^{xi} —K1—C2 ^{xii}	90.23 (6)	H4A—C4—H4B	109.5
O2 ^{ix} —K1—C2 ^{xiii}	80.57 (6)	N1—C4—H4C	109.5

O2—K1—C2 ^{xiii}	99.43 (6)	H4A—C4—H4C	109.5
O6 ^x —K1—C2 ^{xiii}	105.17 (6)	H4B—C4—H4C	109.5
O6 ^{xi} —K1—C2 ^{xiii}	74.83 (6)		
O5 ^{vi} —AI1—O1—C1	27.5 (2)	K1-02-C1-01	177.7 (2)
O5—AI1—O1—C1	-152.5 (2)	Al1-01-C1-02	175.8 (2)
O3 ^{vi} —AI1—O1—C1	118.6 (2)	K1 ^{xiv} —O4—C2—O3	-165.1 (2)
O3—AI1—O1—C1	-61.4 (2)	Al1-03-C2-04	-174.6 (2)
O1—AI1—O5—C3	50.9 (2)	AI1—O3—C2—K1 ^{xiv}	126.7 (7)
01 ^{vi} —AI1—O5—C3	-129.1 (2)	K1 ^{xv} —O6—C3—O5	-177.3 (2)
O3 ^{vi} —AI1—O5—C3	142.1 (2)	Al1-05-C3-06	177.31 (19)
O3—Al1—O5—C3	-37.9 (2)		

Symmetry code(s): (i) -x, -y+2, -z+1; (ii) x-1/2, -y+3/2, z-1/2; (iii) -x+1/2, y+1/2, -z+3/2; (iv) -x+1, -y+2, -z+1; (v) x-1, y, z; (vi) -x+1, -y+1, -z+1; (vii) x+1, y, z; (viii) -x+1/2, y-1/2, -z+3/2; (ix) -x, -y, -z+1; (x) x-1/2, -y+1/2, z+1/2; (xi) -x+1/2, y-1/2, -z+1/2; (xii) x, y-1, z; (xiii) -x, -y+1, -z+1; (xiv) x, y+1, z; (xv) -x+1/2, y+1/2, -z+1/2.

The Al–O distances are in the range of 1.8888(16)–1.9011(16) Å, while the K–O change from 2.6812(18) to 2.7414(18) Å (1.885(4)–1.898(3) Å and 2.691(4)–2.748(4) Å for room-temperature structure, respectively). Taking into account the valence angles, the O–Al–O angles involving oxygen atoms *cis* to each other range from 88.80(7)° to 91.20(7), while those located *trans* amount to 180° (88.85(15)° to 91.28(15) and 180° for room temperature structure, respectively). The octahedral geometry in the KO₆ moiety is more distorted as the O–K–O angles involving oxygen atoms mutually *cis* range from 87.24(6)° to 92.76(6)°, while those located *trans* amount to 180° (87.55(14)° to 92.45(14) and 180° for room-temperature structure, respectively).

lon	Vibration	Free ion symmetry	Site symmetry	Factor group symmetry
		C _{2v} (<i>mm</i> 2)	C ₁ (1)	C _{2h} (2/m)
	v ₁ -v ₃	3A ₁	3A	3A _g +3A _u +3B _g +3B _u
HCOO-	v ₄ -v ₆ T'	$3B_1 \\ A_1 + B_1 + B_2 \\ A_1 + B_2 + B_2$	3A 3A	$3A_g+3A_u+3B_g+3B_u$ $3A_g+3A_u+3B_g+3B_u$
	L	$A_2+B_1+B_2$ $C_{3v}(3m)$	<u> </u>	$\frac{3A_{q}+3A_{u}+3B_{q}+3B_{u}}{C_{2h}(2/m)}$
	v ₁ -v ₅	5A1	5A	5A _g +5A _u +5B _g +5B _u
MeA⁺	V ₆ V7-V12	A ₂ 6E	A 12A	A _g +A _u +B _g +B _u 12A _a +12A _u +12B _a +12B _u
	T' L	A ₁ +E A ₂ +E	3A 3A	3Ă _g +3A _u +3B _g +3B _u 3A _c +3A _u +3B _c +3B _u
Na ⁺		L	$C_i(\overline{1})$	$C_{2h}(2/m)$
			3A _u	3A _u +3B _u
Cr ³⁺			$\frac{\mathbf{C}_{i}(1)}{3A_{u}}$	<u> </u>

Tab. S6. Factor group analysis for MeANaCr. The number of equivalent formate ions should be tripled.^a

Tab. S7. IR and Raman wavenumbers for studied MOF perovskites.ª

MeANaCr	,	MeANaA	lCr	MeNaAl		MeAKCr		MeAKAI	Cr	MeKAI		Assignment
IR	Raman	Assignment										
3157 w		3167 w		3167 w		3174 w		3182 w		3182 w		v(NH ₃ ⁺)
	3039 w		3041 m		3040 m		3031 w		3032 w		3032 w	$v(NH_{3}^{+})+v(CH_{3})$
2995 m		3002 m		3004 m		2996 m		3002 m		3003 m		v(CH ₃)
	2976 m		2978 s		2978 s		2973 m		2974 m		2974 m	v(CH ₃)
						2920 sh		2916 sh		2916 sh		v(CH ₃)
2901 sh		2902 sh		2902 sh		2900 m	2902 w	2901 m	2903 m	2902 m	2903 m	v ₁ (HCOO ⁻)
	2897 sh		2897 sh		2896 sh	2874 m	2873 sh	2878 m	2878 sh	2878 m	2878 sh	v ₁ (HCOO ⁻)
2882 m	2883 s	2888 m	2888 vs	2888 m	2888 vs	2861 m	2863 s	2865 m	2865 vs	2865 m	2865 vs	v ₁ (HCOO ⁻)
	2830 w		2825 w		2825 w		2824 w		2825 w		2825 w	v(NH ₃ ⁺)
2781 w		2785 w		2785 w		2786 w		2791 w		2791 w		o/cb
2758 sh	2757 w	2768 sh	2768 w	2769 sh	2767 w	2758 w	2758 w	2767 w	2767 w	2767 w	2768 w	o/cb
2614 w		2618 w		2619 w		2629 w		2631 w		2631 w		o/cb
2492 w		2498 w		2498 w		2507 w		2512 w		2512 w		o/cb

	1(50		1/71		1(71		1650		1(70		1(72	··· (11000) · 5 (All 1 +)
	1659 m		16/1 m		16/1 m		1659 m		16/2 W		16/3 W	$V_4(HCOO^2)+O_{as}(NH_3^2)$
164 / s	1654 sh	1655 s	1654 vw	1659 s	1654 vw	1650 s		1655 s		1655		$V_4(HCOO^-)+O_{as}(NH_3^+)$
1616 s		1629 s		1631 s		1630 s		1628 s		1628 s		$V_4(HCOO^-)+O_{as}(NH_3^+)$
1597 vs		1611 vs		1610 vs		1609 vs		1612 vs		1612 vs		v₄(HCOO⁻)+δ _{as} (NH ₃ ⁺)
1592 sh		1596 sh		1597 sh		1599 sh		1599 sh		1599 sh		v₄(HCOO⁻)+δ _{as} (NH ₃ ⁺)
	1585 vw		1591 w		1590 w		1587 vw		1594 vw		1594 vw	v ₄ (HCOO ⁻)
1515 w		1515 w		1515 w		1521 w		1526 w		1526 w		$\delta_{s}(NH_{3}^{+})$
1466 w	1467 w	1467 w	1468 w	1467 w	1467 w	1467 w	1468 w	$\delta_{s}(NH_{3}^{+})+\delta_{as}(CH_{3})$				
1460 w	1459 w	1460 w	1460 w	1460 w	1460 w	1461 w	1461 w	1462 w	1461 w	1462 w	1461 w	$\delta_{as}(CH_3)$
1422 vw	1421 vw	1423 w	1422 vw	1423 vw	1422 vw	1423 vw	1422 vw	1424 vw	1422 vw	1424 vw	1423 vw	$\delta_{s}(CH_{3})$
1389 w	1388 vs	1394 m	1392 vs	1394 m	1392 vs	1391 m	1390 vs	1395 m	1394 s	1395 m	1394 s	v ₅ (HCOO ⁻)
1385 sh	1384 sh	1387 sh	1388 sh	1388 sh	1388 sh	1385 sh	1386 sh	1389 sh	1390 sh	1390 sh	1390 sh	v ₅ (HCOO ⁻)
	1342 s		1356 vs		1356 vs		1345 s		1360 vs		1360 vs	v ₅ (HCOO ⁻)
1321 vs		1344 vs		1345 vs		1326 vs		1346 vs		1346 vs		v ₂ (HCOO ⁻)
	1316 m		1328 m		1328 m							v ₂ (HCOO ⁻)
1305 s	1309 m	1329 s	1323 m	1330 s	1322 m	1315 s	1322 s	1336 s	1334 m	1336 s	1334 m	v ₂ (HCOO ⁻)
1296 sh		1323 sh		1325 sh		1307 sh		1323 sh		1323 sh		v ₂ (HCOO ⁻)
1225 sh		1225 sh		1226 sh		1224 sh		1225 sh		1225 sh		p(CH ₃)
	1066 w		1070 w		1071 w		1065 w		1068 w		1070 w	V _e (HCOO ⁻)
	1061 w		1065 w		1066 w		1068 w		1062 w		1063 w	V _e (HCOO ⁻)
1004 w	1004 w	1005 w	1004 m	1005 w	1004 m	1004 w	1004 m	1005 w	1004 m	1004 w	1004 m	v(CN)
987 w		990 w		990 w		990 w		992 w		992 w		v(CN)
969 w		973 w		973 w		981 sh		985 sh		985 w		v(CN)
927 w		928 w		928 w		928 w		929 w		928 w		$O(NH_{2}^{+})$
827 sh		834 sh		834 sh		824 sh		832 sh		832 sh		$V_{2}(HCOO^{-})$
821 sh		825 m		825 m		819 sh		822 m		822 m		V ₂ (HCOO ⁻)
817 m		025 III		025 m		815 m		022 111		022 111		V ₂ (HCOO-)
017 11	808 yay		810 w		811 w	015 11	806 yay		808 w		808 w	v ₃ (HCOO-)
	802 vav		805 w		805 w		700 vw		803 w		803 w	V ₃ (HCOO-)
	002 ***		005 W		005 W	420 sh	177 ***	461 ch	005 W	461 ch	005 W	$T'_{3}(10000)$
426 m		478 ch		481 ch		407 m		401 SH 450 m		401 SH 452 m		$T'(M^{3+})+y+T(HCOO^{-})$
420 m	248	478 SH	242	401 SH	242	407 111	246 m	412 m	241 m	452 m	240 m	
411 511	540 W	437 III	210 w	449 111	342 W		540 W	415 W	207 w	216 w	208 W	
202		221	280 m	220	280 w	276 m		510 W	307 w	510 W	200 w	T(1000)
262 111	220	321 W	269 W	520 W	269 W	270 m	241	246 m	269 W	247	269 W	
243 III	239 W	231 III	238 W	250 m	233 W	238 III	241 W	240 III	246 W	247 III	230 W	$T(HCOO_{1}) + T'(M+1)$
224	206.1	220		250 m			230 W	201	229 W	202	228 W	$T(HCOO^{-})+T(M^{+})$
224 m	206 sh	228 m		224 m		107	011	201 m		202 m		
104		107		107		19/m	211 W	174		176		
184 m		196 m		196 m		173 m		176 m		176 m		$L(HCOO^{+})+T(MeA^{+})+L(MeA^{+})+T(M^{+})$
	168 s	182 m	166 vs	182 m	166 vs	153 sh	165 s	154 sh	162 vs	155 sh	162 vs	$L(HCOO^{+})+T(MeA^{+})+L(MeA^{+})+T(M^{+})$
167 m	122 s	164 m	124 m	165 m	124 m		132 m		139 m		139 m	$L(HCOO^{-})+T'(MeA^{+})+L(MeA^{+})$
	103 m		106 w		106 w		116 m		116 m		117 m	L(HCOO ⁻)+1'(MeA ⁺)+L(MeA ⁺)
102 w		108 w		105 w								L(HCOO ⁻)+T'(MeA ⁺)+L(MeA ⁺)
						86 w		90 w		88 w		L(HCOO ⁻)+T'(MeA ⁺)+L(MeA ⁺)

^aKey: vs, very strong s, strong; m, medium; w, weak; vw, very weak; sh, shoulder.

Based on the DFT results, the stretching vibrations of the NH₃⁺ and CH₃ groups, depending on the halogen ion, are expected in the 3035–3224 cm⁻¹ and 2853–3094 cm⁻¹ ranges,² respectively. Thus, we assigned the broader bands with the highest wavenumbers to the $v(NH_3^+)$ modes and narrower bands to the $v(CH_3)$ modes. In real systems these bands are overlapped due to the H-bonding causing downshifts of the $v(NH_3^+)$ modes, therefore, we do not divide them into symmetric and antisymmetric ones. The assignment is more precise in the case of bending modes. The $\delta_{as}(NH_3^+)$ and $\delta_s(NH_3^+)$ modes are observed in the 1597–1672 cm⁻¹ and 1466–1526 cm⁻¹ ranges, respectively, depending on the metal ions. The former ones are coupled to the v₄ modes of formate ions. The $\delta_{as}(CH_3)$ and $\delta_s(CH_3)$ modes do not overlap each other and are observed at about 1459–1468 cm⁻¹ and 1421–1424 cm⁻¹, respectively. As expected, they are less sensitive to the substitution of metal ions since they are not involved in creation of HBs. The values are in very good agreement with DFT data predicting the $\delta_{as}(CH_3)$ and $\delta_s(CH_3)$ modes in the 1451–1462 cm⁻¹ and 1419– 1421 cm⁻¹ ranges, respectively.² The rocking $\rho(NH_3^+)$ and $\rho(CH_3)$ modes were found as weak bands at about 928 cm⁻¹ and 1225 cm⁻¹, respectively. A few bands in the 969–1004 cm⁻¹ range were assigned to the stretching vibrations of the CN bond, v(CN). The torsional mode v_t that have A₂ symmetry and is silent for the free CH₃NH₃⁺ molecule becomes active in the C_{2h} symmetry (Tab. S6). Previous DFT calculations estimated its energy to about 402 cm^{-1,3} Our studies show that it can be found at about 407 cm⁻¹ and 450 cm⁻¹ for analogues with Cr³⁺ and Al³⁺ ions, respectively, and is coupled to lattice modes.

References:

1 Y. Yu, R. Shang, S. Chen, B.-W. Wang, Z.-M. Wang and S. Gao, Chem. - A Eur. J., 2017, 23, 9857–

9871.

- 2 G. Schuck, D. M. Többens, M. Koch-Müller, I. Efthimiopoulos and S. Schorr, *J. Phys. Chem. C*, 2018, **122**, 5227–5237.
- 3 M. A. Pérez-Osorio, R. L. Milot, M. R. Filip, J. B. Patel, L. M. Herz, M. B. Johnston and F. Giustino, *J. Phys. Chem. C*, 2015, **119**, 25703–25718.