Electronic Supplementary Information

Giant Enhancement of Electronic Polarizability and the First Hyperpolarizability of Fluorides-Decorated Graphene *versus* Graphyne

and Graphdiyne: Insights from Ab Initio Calculations

Xiaojun Li,^{a,*} Jun Lu^b

^aSchool of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121,

Shaanxi, P. R. China; ^bSchool of Life Science and Technology, Inner Mongolia University of

Science and Technology, Baotou 014010, P. R. China

Contents:

- Calculation of nonlinear optical properties	S2
- Optimized geometries of $M_3F@GE^{0/+}$, $M_3F@GY^{0/+}$, and $M_3F@GDY^{0/+}$ complexes, Figure S1	S3
- Simulated optical absorption spectra of neutral M ₃ F@GDY, Figure S2	S4
- Simulated optical absorption spectra of cationic M ₃ F@GDY ⁺ , Figure S3	S5
- References	S6

Calculation of nonlinear optical properties

The energy of a system is a function of homogeneous electric field, and its Taylor expansion with respect to the field can be expressed as the following equation:^[1]

$$E(F) = E^{0} - \mu_{i}F_{i} - \frac{1}{2}\alpha_{ij}F_{i}F_{j} - \frac{1}{6}\beta_{ijk}F_{i}F_{j}F_{k} - \frac{1}{24}\gamma_{ijkl}F_{i}F_{j}F_{k}F_{l}\cdots$$
(1)

where E^0 is the system energy in the absence of an electric field, F_i is the electric field component along the *i* direction. The μ_i , α_{ij} , and β_{ijk} terms are the dipole moment, polarizability, and the first hyperpolarizability, respectively, of which β_{ijk} is recognized as second-order nonlinear optical (NLO) response coefficient.^[2] The mean dipole moment (μ_0), static polarizability (α_0), and the static first hyperpolarizability (β_{tot}) are defined as follows:

$$\mu_0 = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2}$$
(2)

$$\alpha_0 = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3 \tag{3}$$

$$\beta_{\text{tot}} = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2}$$
(4)

where
$$\beta_i = (1/3) \sum_{j} (\beta_{ijj} + \beta_{jji} + \beta_{jij})$$
 $i, j = \{x, y, z\}$

The linear and nonlinear optical properties of these complexes, e.g., polarizability (α) and first hyperpolarizability (β), were calculated by using the long-range corrected CAM-B3LYP functional^[3] with the all-electron 6-311++G(2d, 2p) basis sets, because the method has been confirmed to be much reliable for the evaluation of various species.^[4]

Figure S1. Optimized geometries of (a) $M_3F@GE^{0/+}$, (b) $M_3F@GY^{0/+}$, and (c) $M_3F@GDY^{0/+}$ (M = Li, Na, and K) complexes. The top and side views are labeled.

Figure S2. Simulated optical absorption spectra of neutral (a) $Li_3F@GDY$, (b) $Na_3F@GDY$, and (c) $K_3F@GDY$ complexes using the CAM-B3LYP method. The oscillator strengths of them are inserted.

Figure S3. Simulated optical absorption spectra of the cationic (a) $Li_3F@GDY^+$, (b) $Na_3F@GDY^+$, and (c) $K_3F@GDY^+$ complexes using the CAM-B3LYP method. The oscillator strengths of them are inserted.

References

- a) D. R. Kanis, M. A. Ratner, T. J. Marks, *Chem. Rev.* 1994, 94, 195–242; b) H. D. Cohen, C. C. J. Roothaan, *J. Chem. Phys.* 1965, 43, S34–S39.
- [2] A. D. Buckhgham, B. J. Orr, Q. Rev. Chem. Soc. 1967, 21, 195–212.
- [3] T. Yanaia, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51–57.
- [4] a) S.-I. Lu, J. Comput. Chem. 2011, 32, 730–736; b) W.-M. Sun, L.-T. Fan, Y. Li, J.-Y. Liu, D. Wu, Z.-R. Li, Inorg. Chem. 2014, 53, 6170–6178; c) X. Li, H. Ren, X. Y. J. Song, Spectrochimica Acta Part A 2015, 144, 258–265; d) L. Zhang, D. Qi, L. Zhao, C. Chen, Y. Bian, W. Li, J. Phys. Chem. A 2012, 116, 10249–10256.