Supplementary Information

Superior Spin-Polarized Electronic Structure in MoS₂/MnO₂ Heterostructures with An Efficient Hole Injection

Baozeng Zhou*, Zheng Li, Jiaming Wang, Kangqiang Wang

Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electrical and

Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China

^{*}Author to whom all correspondence should be addressed.

E-mail: baozeng@tju.edu.cn

Table S1. Calculated lattice constant *a*, *M*-*X* bond length (d_{M-X}), layer thickness (d_{X-X}), interlayer distance *D*, energy difference (ΔE) between FM and AFM states, magnetic moments (*Mag*), and work function (Φ) of the pristine monolayers and the most stable most stable configurations in each group.

	a (Å)	$d_{M-X}(\text{\AA})$	$d_{X-X}(\text{\AA})$	D (Å)	$\Delta E (\mathrm{meV})$	$Mag\left(\mu_{B} ight)$	$\Phi(\mathrm{eV})$
<i>h</i> -MnO ₂	2.90	1.85	2.31	_	38	0.66	6.31
<i>t</i> -MnO ₂	2.98	1.88	2.50	_	53	3.00	6.98
MoS_2	3.13	2.37	3.12	_	_	0.00	5.85
MoS ₂ /hMnO ₂	3.05	_	_	2.79	45	1.20	5.96
MoS ₂ /tMnO ₂	3.06	_	_	2.76	49	3.00	6.32

Table S2. In-plane lattice constant a, equilibrium interlayer distance D, and binding energies (E_b) of all stacking models.

MoS ₂ / <i>h</i> -MnO ₂	AA	AB	C27	C28	T1	T2
<i>a</i> (Å)	3.05	3.05	3.03	3.05	3.06	3.05
D (Å)	3.21	2.79	2.86	3.18	2.83	2.80
$E_{\rm b}({\rm meV})$	-133.7	-296.5	-239.2	-138.3	-221.7	-243.6
MoS ₂ /t-MnO ₂	fcc-I	fcc-II	hcp-I	hcp-II	top-I	top-II
<i>a</i> (Å)	3.06	3.06	3.05	3.06	3.06	3.06
D (Å)	2.80	2.76	2.82	2.86	3.29	3.27
$E_{\rm b}~({\rm meV})$	-312.3	-337.8	-309.2	-303.7	-180.7	-188.6

Fig. S1. Side views of the nonequivalent configurations of (a) MoS₂/*h*-MnO₂ and (b) MoS₂/*t*-MnO₂ heterostructures.

Fig. S2. Phonon bands of AB and fcc-II stacking models.

Fig. S3. The calculated band structures and DOS by HSE06 methods for (a) AB and (b) fcc-II stacking heterostructures, respectively. The Fermi levels are set to zero.

Fig. S4. Valley polarization in MoS_2/t -MnO₂ heterostructure. Spin-up and spin-down states are presented by red and blue, respectively.

Fig. S5. Binding energies per unit cell as a function of (a) the interlayer distance and (b) in-plane strain in AB and fcc-II stacking heterostructures.

Fig. S6. Band structures of (a) AB-stacking and (b) fcc-II stacking models with varying in-plane biaxial strain. The Fermi level is set to zero.