Supporting information

Molecular design of ionic liquids as novel nonmetallic catalysts used in acetylene hydrochlorination reaction

Yao Nian, ^a Jinli Zhang, ^{a,b} Xiaoyan Li, ^c Yan Wang, ^a Wei Li, ^a Pewee Datoo Kolubah ^a and You Han ^{*a,d}

Correspondence to: You Han, E-mail: <u>yhan@tju.edu.cn</u> Phone: +86-022-27404495

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

^b School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P.

R. China

^c Chemical Engineering Department, Tianjin University Renai College, Tianjin 301636, P.R. China

^d Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China

Calculations (v/cm ⁻¹)	Experiments (v/cm ⁻¹)	Assignments ¹⁻⁵
528	521	σ C-P
677	690	ү С-Н
709	718	w C-C
741	745	ү С-Н
768	761	vas C-P
982	991	ring breathing
1071	1099	r C-H
1422	1437	σС-Н
1517	1477	σС-Н
1571	1578	v C=C
2924		v C-H
3094	3036	v C-H

 Table S1a. IR Spectra of TPPB

Noted: Frequency was calculated at B3LYP/6-311G(d,p) and frequency correction factor was set

as 0.9682⁶.

Calculations (v/cm ⁻¹)	Experiments (v/cm ⁻¹)	Assignments ¹⁻⁵
528	528	σ C-P
677	692	ү С-Н
709	723	w C-C
741	754	ү С-Н
986	997	ring breathing
1071	1107	r C-H
1320	1313	r C-H
1422	1439	σC-H
1571	1583	v C=C
	2854	v C-H
2903		v C-H
	2954	v C-H
3094	3064	v C-H

 Table S1b. IR Spectra of TPPC

Experiments (v/cm ⁻¹)	Assignments ¹⁻⁵
494	σ C-P
532	σ C-P
690	ү С-Н
721	w C-C
744	ү С-Н
758	vas C-P
806	r C-H
1093	r C-H
1437	σC-H
2865	v C-H
2885	v C-H
2958	v C-H
3004	v C-H
3051	v C-H
2074	C II
	Experiments (v/cm ⁻¹) 494 532 690 721 744 758 806 1093 1437 2865 2885 2958 3004 3051

 Table S1c. IR Spectra of BuTPPB

 Table S1d. IR Spectra of TPPT

Calculations (v/cm ⁻¹)	Experiments (v/cm ⁻¹)	Assignments ¹⁻⁵
517	528	σ C-P
687	691	σC-P, vBF ₄
709	724	w C-C
741	750	γ C-H, v BF ₄
932	916	γ C-H, v BF ₄
1007	999	ring breathing
1081	1069	r C-H
1124	1125	r C-H, v BF ₄
1177	1195	r C-H
1422	1436	σC-H
1571		v C=C
3094	3105	v C-H
3235	3265	v C-H

Configuration	Group	TPPB	TPPC	BuTPPB	ТРРТ
	HC1	-0.188	-0.210	-0.185	-0.079
Adsorption of HCl	IL anion	0.110	0.128	0.118	0.047
	IL cation	0.078	0.082	0.067	0.032
	C_2H_2	-0.037	-0.025	-0.043	-0.038
Adsorption of C ₂ H ₂	IL anion	0.020	0.014	0.027	0.037
	IL cation	0.017	0.011	0.016	0.001
Adsorption of C ₂ H ₃ Cl	C_2H_3Cl	-0.040	-0.021	-0.039	-0.049
	IL anion	0.010	-0.028	0.012	0.032
	IL cation	0.030	0.049	0.027	0.017

 Table S2a. Mulliken charge changes in the adsorption configuration

Note: Positive value means losing electrons; Negative value means getting electrons.

Configuration	Group	TPPB	TPPC	BuTPPB	TPPT
	HC1	-0.187	-0.221	-0.179	-0.052
Adsorption of HCl	IL anion	0.131	0.164	0.133	0.041
	IL cation	0.056	0.057	0.046	0.011
Adsorption of C ₂ H ₂	C_2H_2	-0.026	-0.026	-0.026	-0.017
	IL anion	-0.002	0.002	0.005	0.013
	IL cation	0.028	0.024	0.021	0.004
Adsorption of C2H3Cl	C ₂ H ₃ Cl	-0.011	-0.012	-0.012	-0.009
	IL anion	-0.013	-0.009	-0.005	0.004
-	IL cation	0.024	0.021	0.017	0.005

Table S2b. NPA charge changes in the adsorption configuration

Configuration	Group	TPPB	TPPC	BuTPPB	TPPT
	HC1	-0.233	-0.264	-0.221	-0.101
Adsorption of HCl	IL anion	0.158	0.185	0.168	0.096
	IL cation	0.065	0.079	0.053	0.005
Adsorption of C_2H_2	C_2H_2	-0.076	-0.085	-0.083	-0.046
	IL anion	0.048	0.060	0.060	0.056
	IL cation	0.028	0.025	0.023	-0.010
Adsorption of C ₂ H ₃ Cl	C ₂ H ₃ Cl	-0.044	-0.056	-0.046	-0.031
	IL anion	0.034	0.048	0.045	0.041
	IL cation	0.010	0.008	0.001	-0.010

Table S2c. Hirshfeld charge changes in the adsorption configuration

Table S3. Relative energies during reaction processes and reaction activation energies

Structure Energy (kJ/mol)	Co-ads	IM	TS	Pr-ads	Pr	Energy Barrier	Activation Energy (ΔG_{453})
TPPB	0	58.85	118.59	-47.99	-30.89	59.73	85.65
TPPC	0	47.44	115.91	-41.93	-23.78	68.47	92.13
BuTPPB	0	31.27	119.13	-49.37	-32.52	87.86	118.67
TPPT	0	14.04	156.37	-72.40	-47.65	142.33	157.75
Without catalyst	0		178.49		-101.57	178.49	189.56

Table S4. The catalytic performance of non-metal catalyst for acetylene hydrochlorination

 recently reported in literatures.

Catalyst	Reaction conditions	Initial maximum C ₂ H ₂ conversion
SiC@N-C7	$T = 473$ K. $GHSV(C_2H_2) = 30$ h ⁻¹ .	80.0%
SIC WIN-C	$V_{\rm HCl}/V_{\rm C2H2} = 1.15$	80.070
$\sigma_{-}C3N4/\Lambda C^{8}$	T= 453 K. <i>GHSV</i> (C ₂ H ₂) = 50 h ⁻¹ .	75.0%
g-CJN4/AC	$V_{\rm HCl}/V_{\rm C2H2} = 0.85$	75.070
N-OMC-700 ⁹	$T = 473$ K. $GHSV(C_2H_2) = 32$ h ⁻¹ .	77.0%
N-OME-700	$V_{\rm HCl}/V_{\rm C2H2} = 1.15$	//.0/0
PANI-AC90010	$T = 453$ K. $GHSV(C_2H_2) = 36$ h ⁻¹ .	76.0%
TANI-AC700	$V_{\rm HCl}/V_{\rm C2H2} = 1.15$	70.070
Z4M1 ¹¹	T= 453 K. <i>GHSV</i> (C ₂ H ₂) = 50 h ⁻¹ .	60.0%
	$V_{\rm HCl}/V_{\rm C2H2} = 1.15$	00.070
N-OMC-O2.0 ¹²	$T= 180 \text{ K. } GHSV(C_2H_2) = 50 \text{ h}^{-1}.$	31 0%
	$V_{\rm HCl}/V_{\rm C2H2} = 1.1$	54.070
$AC = 11500^{13}$	T= 483 K. <i>GHSV</i> (C ₂ H ₂) = 50 h ⁻¹ .	81 0%
AC-11-0500	$V_{\rm HCl}/V_{\rm C2H2} = 1.2$	81.070
$ZIE 8/S \wedge C^{14}$	$T= 220 \text{ K}. GHSV(C_2H_2) = 30 \text{ h}^{-1}.$	81 00/
211 ⁻ -0/SAC	$V_{\rm HCl}/V_{\rm C2H2} = 1.15$	81.070
DDA/SiC 70015	$T = 493$ K. $GHSV(C_2H_2) = 0.08$ ml	770/
TDA/SIC-700	$g^{-1} \min^{-1}$. $V_{HCI}/V_{C2H2} = 1.15$	/ / /0
NG C NIL 16	T= 493 K. <i>GHSV</i> (C ₂ H ₂) = 35 h ⁻¹ .	<u> 200</u> /
IN 5-С- INП ₃ ^{-*}	$V_{\rm HCl}/V_{\rm C2H2} = 1.2$	8070
n DN17	$T = 553$ K. $GHSV(C_2H_2) = 1.32$	00.9/
p-Dive	mL min ⁻¹ g ⁻¹ . $V_{\text{HCl}}/V_{\text{C2H2}} = 1.2$	99 /0
15%TPPB/SAC[this	$T = 453$ K. $GHSV(C_2H_2) = 50$ h ⁻¹ .	81 00/
work]	$V_{\rm HCl}/V_{\rm C2H2} = 1.15$	04.070

Note: The reaction temperature has a great influence on the C_2H_2 conversion in acetylene hydrochlorination. The higher reaction temperature is, the higher C_2H_2 conversion achieved.

Catalyst	Group/ atom	ΔCharge (Co ads-free)	ΔCharge (IM-Co ads)	ΔCharge (TS-IM)	∆Charge (Pr-TS)
	H2	0.043	-0.050	0.058	-0.053
	C1	0.029	-0.144	-0.013	0.093
	C2	-0.080	0.157	0.059	-0.245
	Н3	-0.014	0.057	0.062	-0.067
	C_2H_2	-0.022	0.020	0.166	-0.272
TPPB catalyst	Cl1	-0.195	-0.431	0.044	0.638
outuryst	H1	0.028	-0.050	0.074	-0.038
	HC1	-0.167	-0.481	0.118	0.600
	IL anion	0.102	0.483	-0.330	-0.245
	IL cation	0.087	-0.022	0.046	-0.083
	IL	0.189	0.461	-0.284	-0.328
	H2	0.062	-0.067	0.049	-0.052
	C1	0.031	-0.149	-0.040	0.116
	C2	-0.083	0.159	0.046	-0.229
	Н3	-0.014	0.056	0.050	-0.056
	C_2H_2	-0.004	-0.001	0.105	-0.221
TPPC catalyst	Cl1	-0.229	-0.392	0.045	0.626
Cataryst	H1	0.060	-0.022	0.073	-0.062
	HC1	-0.169	-0.414	0.118	0.564
	IL anion	0.085	0.461	-0.291	-0.283
	IL cation	0.088	-0.046	0.068	-0.060
	IL	0.173	0.415	-0.223	-0.343

 Table S5a. Mulliken charge changes during acetylene hydrochlorination reaction

	H2	0.044	-0.052	0.057	-0.051
	C1	0.035	-0.144	-0.025	0.098
	C2	-0.092	0.144	0.080	-0.242
	H3	-0.014	0.115	0.007	-0.070
	C_2H_2	-0.027	0.063	0.119	-0.265
BuTPPB	Cl1	-0.183	-0.488	0.073	0.655
Catalyst	H1	0.028	-0.051	0.075	-0.038
	HC1	-0.155	-0.539	0.148	0.617
	IL anion	0.114	0.473	-0.316	-0.259
	IL cation	0.068	0.003	0.049	-0.093
	IL	0.182	0.476	-0.267	-0.352
	H2	0.055	0.014	0.063	-0.108
	C1	0.024	0.014	-0.048	-0.054
	C2	-0.098	-0.008	0.242	-0.229
	Н3	-0.015	0.003	0.094	-0.040
	C_2H_2	-0.034	0.023	0.351	-0.431
TPPT catalyst	Cl1	-0.141	0.051	-0.412	0.551
Catalyst	H1	0.068	-0.037	0.044	-0.082
	HCl	-0.073	0.014	-0.368	0.469
	IL anion	0.070	-0.034	0.014	-0.019
	IL cation	0.037	-0.003	0.003	-0.019
	IL	0.107	-0.037	0.017	-0.038

Catalyst	Group/ atom	ΔCharge (Co ads-free)	ΔCharge (IM-Co ads)	ΔCharge (TS-IM)	ΔCharge (Pr-TS)
	H2	0.034	-0.031	0.045	-0.068
	C1	0.006	-0.093	-0.189	0.125
	C2	-0.052	0.083	0.290	-0.307
	Н3	-0.006	0.056	-0.004	-0.078
	C_2H_2	-0.018	0.014	0.143	-0.328
TPPB catalyst	Cl1	-0.172	-0.466	0.106	0.720
eddaryst	H1	0.008	-0.035	0.036	-0.019
	HC1	-0.165	-0.501	0.142	0.701
	IL anion	0.117	0.506	-0.309	-0.326
	IL cation	0.065	-0.019	0.024	-0.047
	IL	0.183	0.487	-0.285	-0.373
	H2	0.039	-0.035	0.037	-0.065
	C1	0.009	-0.097	-0.176	0.113
	C2	-0.058	0.084	0.254	-0.266
	Н3	-0.006	0.057	-0.016	-0.069
	C_2H_2	-0.016	0.009	0.099	-0.286
TPPC catalyst	Cl1	-0.208	-0.428	0.113	0.710
outuryst	H1	0.012	0.025	-0.013	-0.028
	HC1	-0.196	-0.403	0.100	0.681
	IL anion	0.149	0.422	-0.224	-0.355
	IL cation	0.064	-0.028	0.025	-0.040
	IL	0.212	0.394	-0.199	-0.395

 Table S5b. NPA charge changes during acetylene hydrochlorination reaction

BuTPPB	H2	0.033	-0.031	0.044	-0.066
	C1	0.014	-0.088	-0.199	0.122
	C2	-0.056	0.084	0.282	-0.296
	Н3	-0.006	0.056	-0.002	-0.080
	C_2H_2	-0.015	0.021	0.124	-0.320
	Cl1	-0.164	-0.469	0.091	0.731
cataryst	H1	0.009	-0.039	0.035	-0.016
	HCl	-0.155	-0.508	0.126	0.715
	IL anion	0.118	0.517	-0.291	-0.350
	IL cation	0.052	-0.030	0.040	-0.045
	IL	0.170	0.487	-0.251	-0.395
	H2	0.473	0.018	0.061	-0.109
	C1	0.030	0.015	-0.252	0.075
	C2	0.016	-0.024	0.437	-0.344
TPPT catalyst	Н3	-0.052	0.012	0.028	-0.064
	C_2H_2	-0.007	0.022	0.274	-0.442
	Cl1	-0.099	0.037	-0.392	0.635
	H1	0.052	-0.019	0.096	-0.158
	HCl	-0.047	0.017	-0.296	0.477
	IL anion	0.047	-0.033	0.018	-0.029
	IL cation	0.013	-0.006	0.004	-0.006
	IL	0.061	-0.039	0.022	-0.035

Catalyst	Group/ atom	ΔCharge (Co ads-free)	ΔCharge (IM-Co ads)	∆Charge (TS-IM)	ΔCharge (Pr-TS)
TPPB	H2	-0.031	0.023	0.010	-0.042
	C1	0.007	-0.023	0.038	0.000
	C2	-0.025	0.048	0.129	-0.082
	Н3	-0.011	-0.027	0.020	-0.029
	C_2H_2	-0.060	0.020	0.197	-0.153
	Cl1	-0.132	-0.348	0.082	0.439
catalyst	H1	-0.072	0.022	-0.027	-0.013
	HCl	-0.204	-0.325	0.055	0.426
	IL anion	0.190	0.331	-0.251	-0.236
	IL cation	0.074	-0.026	-0.001	-0.037
	IL	0.264	0.305	-0.252	-0.273
TPPC catalyst	H2	-0.031	0.023	0.002	-0.037
	C1	0.006	-0.019	0.014	0.019
	C2	-0.026	0.051	0.104	-0.060
	Н3	-0.011	-0.027	0.025	-0.036
	C_2H_2	-0.063	0.029	0.145	-0.114
	Cl1	-0.160	-0.320	0.081	0.438
	H1	-0.071	0.042	-0.038	-0.025
	HCl	-0.231	-0.278	0.043	0.413
	IL anion	0.212	0.284	-0.187	-0.261
	IL cation	0.082	-0.034	-0.001	-0.038
	IL	0.294	0.250	-0.188	-0.299

 Table S5c. Hirshfeld charge changes during acetylene hydrochlorination reaction

BuTPPB	H2	-0.030	0.023	0.008	-0.042
	C1	0.006	-0.019	0.032	0.003
	C2	-0.027	0.049	0.123	-0.074
	Н3	-0.011	-0.023	0.015	-0.028
	C_2H_2	-0.062	0.030	0.178	-0.141
	Cl1	-0.130	-0.315	0.032	0.453
cataryst	H1	-0.069	0.018	-0.025	-0.014
	HCl	-0.199	-0.297	0.007	0.439
	IL anion	0.203	0.342	-0.235	-0.264
	IL cation	0.058	-0.075	0.050	-0.034
	IL	0.261	0.267	-0.185	-0.298
TPPT catalyst	H2	-0.017	0.004	0.013	-0.036
	C1	0.004	0.033	0.048	-0.059
	C2	-0.029	0.024	0.213	-0.138
	H3	-0.012	0.007	0.031	-0.071
	C_2H_2	-0.054	0.068	0.305	-0.304
	Cl1	-0.066	0.041	-0.325	0.383
	H1	-0.028	0.000	0.002	-0.053
	HCl	-0.094	0.041	-0.323	0.330
	IL anion	0.302	-0.245	0.031	-0.047
	IL cation	-0.154	0.136	-0.013	0.021
	IL	0.148	-0.109	0.018	-0.026

Figure S1. Structural formulas of (a) TPPB, (b) TPPC, (c) BuTPPB and (d) TPPT ILs.

Figure S2. Calculated IR spectra and standard IR spectra for TPPB (a), TPPC (b), BuTPPB (c) and TPPT (d).

Figure S3. HOMO orbital of (a1) HCl, (b1) C_2H_2 and LUMO orbital of (a2) HCl, (b2) C_2H_2 (isosurface=0.05).

Figure S4. TGA curves of the TPPB (a), TPPC (b), BuTPPB (c) and TPPT (d).

Figure. S5 Conversion of acetylene (a) and selectivity to VCM (b) over 15%TPPB/SAC under different reaction temperature from 413 K to 453 K, with of *GHSV* (C_2H_2) = 50 h⁻¹ and V_{HCl}/V_{C2H2} =1.15. Conversion of acetylene (c) and selectivity to VCM (d) over 15%TPPB/SAC under different V_{HCl}/V_{C2H2} from 1.05 to 1.20, with of Temperature = 453 K and *GHSV* (C_2H_2) = 50 h⁻¹.

The effect of the pressure has not been considered and the effect of reaction temperature and HCl/C₂H₂ feeding volume ratio ($V_{\text{HCl}}/V_{\text{C2H2}}$) was investigated, as shown in Figure S5. Because the reaction temperature is 413 K in the industrial operations^{18, 19}, the reaction temperatures of 413 K, 433 K and 453 K were chosen here. The acetylene conversion over 15%TPPB/SAC catalyst is increased with the reaction temperature, and the VCM selectivity is above 99% after several hour reaction. Considering the energy consumption in the reaction as well as the general temperature used in the previous work, which was 443 K ~ 453 K²⁰⁻²², the optimal temperature was set at 453 K. The effect of $V_{\rm HCI}/V_{\rm C2H2}$ were studied by vary $V_{\rm HCI}/V_{\rm C2H2}$ from 1.05 to 1.20 (shown in Figure R1c and d). For acetylene hydrochlorination reaction, excessive content of HCl compared with C₂H₂ can inhibit the formation of carbon deposition by the polymerization of C₂H₂ and VCM²³. When the ratio of $V_{\rm HCI}/V_{\rm C2H2}$ increased from 1.05 to 1.15, the acetylene conversion is gradually increased from 65% to 84%, whereas it is decreased to 78% when the $V_{\rm HCI}/V_{\rm C2H2}$ equals 1.20. Although the VCM selectivity is the lowest as $V_{\rm HCI}/V_{\rm C2H2} = 1.15$, it is still over 99% after several hour reaction. Thus, the optimal $V_{\rm HCI}/V_{\rm C2H2}$ was set at 1.15.

Figure S6. PDOS of catalytic reaction process on TPPC

Figure S7. PDOS of catalytic reaction process on TPPT

Figure S8. Hydrogen bonds in IM_{TPPB} and IM_{TPPT} configurations

Figure S9. C_2H_2 conversion (a) and VCM selectivity (b) over 15%MTPPB/SAC and 15%TMPB/SAC catalysts under reaction conditions of T = 453 K, *GHSV* (C_2H_2) = 50 h⁻¹ and V_{HCI}/V_{C2H2} = 1.15.

Reference:

- 1. S. J. Cornforth, R. H. Cornforth and R. T. Gray, *Journal of the Chemical Society, Faraday Transactions*, 1982, 1, 2289-2297
- 2. V. G. Wittig and G Geissler, Aus dem Chemischen Institut der Universitat Tubingen, 1953, 44-57
- 3. A. Hercouet and M. L. Corre, *Phosphorous and Sulfur and the Related Elements*, 1987, **29**, 111-113.
- 4. V. V. Grushin, I. I. Demkina and T. P. Tolstaya, *Inorganic Chemistry*, 1991, **30**, 1760-1765.
- 5. K. Dong, X. Liu, H. Dong, X. Zhang and S. Zhang, *Chemical Reviews*, 2017, 117, 6636-6695.
- 6. F. Giacalone, M. Gruttadauria, *ChemCatChem*. 2016, **8**, 664-684.
- 7. X. Li, X. Pan, L. Yu, P. Ren, X. Wu, L. Sun, F. Jiao and X. Bao, Nature Communications, 2014, 5, 3688-3695.
- 8. X. Li, Y. Wang, L. Kang, M. Zhu and B. Dai, *Journal of Catalysis*, 2014, **311**, 288-294.
- 9. X. Li, X. Pan and X. Bao, *Journal of Energy Chemistry*, 2014, 23, 131-135.
- 10. S. Chao, F. Zou, F. Wan, X. Dong, Y. Wang, Y. Wang, Q. Guan, G. Wang and W. Li, *Scientific Reports*, 2017, 7, 39789-39795.
- 11. X. Li, J. Zhang and W. Li, Journal of Industrial and Engineering Chemistry, 2016, 44, 146-154.
- 12. Y. Yang, G. Lan, X. Wang and Y. Li, *Chinese Journal of Catalysis*, 2016, **37**, 1242-1248.
- 13. T. Zhang, J. Zhao, J. Xu, J. Xu, X. Di and X. Li, *Chinese Journal of Chemical Engineering*, 2016, 24, 484-490.
- 14. X. Li, J. Zhang, Y. Han, M. Zhu, S. Shang and W. Li, Journal of Materials Science. 2017, 53, 4913-4926.
- 15. X. Li, P. Li, X. Pan, H. Ma and X. Bao, Applied Catalysis B: Environmental, 2017, 210, 116-120.
- 16. X. Dong, S. Chao, F. Wan, Q. Guan, G. Wang and W. Li, Journal of Catalysis, 2018, 359, 161-170.
- 17. P. Li, H. Li, X. Pan, K. Tie, T. Cui, M. Ding and X. Bao, ACS Catalysis, 2017, 7, 8572-8577.
- X Wei, H Shi, W Qian, G. Luo, Y. Jin and F. Wei. *Industrial & Engineering Chemistry Research*, 2009, 48, 128-133.
- 19. H. Bremer and H. Lieske, *Applied Catalysis*, 1985, **18**, 191-203.
- 20. P. Johnston, N. Carthey and G. J. Hutchings, *Journal of the American Chemical Society*, 2015, **137**, 14548-14557.
- 21. J. Zhao, Y. Yu, X. Xu, S. Di, B. Wang, H. Xu, J. Ni, L. Guo, Z. Pan and X. Li, *Applied Catalysis B: Environmental*, 2017, **206**, 175-183.
- 22. H. Dai, M. Zhu, H. Zhang, F. Yu, C. Wang and B. Dai, *Journal of Industrial and Engineering Chemistry*, 2017, **50**, 72-78.
- 23. X. Li, J. Zhang and W Li. Journal of Industrial and Engineering Chemistry, 2016, 44, 146-154.