Improving the accuracy of solid-state nuclear magnetic resonance chemical

shift prediction with a simple molecular correction

Martin Dračínský, ^a Pablo Unzueta, ^b Gregory Beran^b

^aInstitute of Organic Chemistry and Biochemistry, AS CR, Flemingovo 2, Prague, Czech Republic ^bDepartment of Chemistry, University of California, Riverside, California 92521, USA

Electronic Supplementary Information

Figure S1. Crystal structures and corresponding CSD reference codes included in the ¹³C benchmark set.

Figure S2. Crystal structures and corresponding CSD reference codes included in the ¹⁵N benchmark set.

Figure S3. Crystal structures and corresponding CSD reference codes included in the ¹⁷O benchmark set.

Figure S4. The correlation between the uncorrected GIPAW-calculated and experimental chemical shifts in the carbon benchmark set.

Figure S5. The correlation between PBEO-corrected and experimental chemical shifts in the carbon benchmark set.

Table S1. The parameters of the linear correlation between experimental chemical shifts and calculated shieldings (GIPAW, SCRMP and GIPAW calculations corrected with monomer corrections calculated with various basis sets).

	¹³ C		¹⁵ N		¹⁷ 0	
Method	Slope	Intercept	Slope	Intercept	Slope	Intercept
GIPAW	-1.004	170.443	-0.970	180.160	-0.927	232.940
SCRMP	-1.034	185.711	-0.985	193.429	-0.958	257.794
PBE0/6-311+G(2d,p)	-1.062	180.005	-1.025	189.954	-1.024	261.767
PBE0/6-31G(p)	-1.067	179.615	-1.031	190.177	-1.028	262.963
PBEO/pcSseg1	-1.066	180.948	-1.025	190.304	-1.026	263.197
PBE0/pcSseg2	-1.061	181.045	-1.023	191.020	-1.022	263.152
PBE0/pcSseg3	-1.061	180.838	-1.024	191.016	-1.021	262.216

Figue S6. Errors in reproducing the experimental ¹³C anisotropy calculated from the principal components.

Figure S7. Errors in reproducing the experimental ¹³C asymmetry calculated from the principal components.

To complement Figure 2 in the main paper, Figures S6 and S7 plot the error distributions for the chemical shielding anisotropy and asymmetry relative to experiment. These were computed from the principal components of the shielding tensor according to the Haeberlen convention:

$$\begin{split} |\delta zz - \delta i so| &\geq |\delta xx - \delta i so| \geq |\delta yy - \delta i so| \\ \text{Isotropic: } \delta i so &= (\delta 11 + \delta 22 + \delta 33)/3 \\ \text{Anisotropy: } \delta &= 3(\delta zz - \delta i so)/2 \\ \text{Asymmetry: } \eta &= (\delta yy - \delta xx) / \delta \end{split}$$

Figure S8. ¹³C CP-MAS spectrum of adenosine.

Figure S9. The correlation between calculated NMR shieldings and experimental shifts in adenosine. The original signal assignment of C2' and C3' is used in this plot.

Figure S10. The correlation between calculated NMR shieldings and experimental shifts in adenosine. The new signal assignment of C2' and C3' is used in this plot.

Figure S11. ¹H NMR spectrum of adenosine in DMSO- d_6 with signal assignment.

Figure S12. ¹³C attached proton test (APT) NMR spectrum of adenosine in DMSO- d_6 with signal assignment. Negative signals correspond to CH and CH₃ groups, positive signals correspond to CH₂ and quaternary carbons.

Figure S13. H,H-COSY spectrum of adenosine in DMSO-*d*₆ with signal assignment.

Figure S14. H,C-HSQC spectrum of a denosine in DMSO- d_6 with signal assignment.

Figure S15. ¹³C CP-MAS spectrum of L-cysteine.

Figure S17. ¹³C CP-MAS spectrum of L-threonine.

Figure S18. ¹³C CP-MAS spectrum of L-glutamine

Figure S19. C,H-HETCOR spectrum of L-glutamine

Table S2: Mean absolute difference (MAD) and max difference in the predicted chemical shielding for corrections computed on the single molecule only versus the entire asymmetric unit and how those differences impact the agreement between predicted and experimental chemical shifts. Results here reflect only the multi-component crystals from the test sets. All values are in ppm.

	Shielding Correction		Error vs Experiment			
			Mole	cule Only	Asymmetric Unit	
	MAD	Max Diff	MAE	Max Error	MAE	Max Error
Carbon shift	0.02	0.08	1.8	2.9	1.8	2.9
Carbon CSA	0.04	0.16				
Nitrogen shift	1.8	6.9	3.1	8.3	3.4	9.1
Oxygen shift	1.66	6.25	3.3	6.3	4.0	11.4