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2 Fig. S1 XRD θ−2θ scan of the Al:ZnO (125 nm)/PMN-PT (001) heterostructures.

3

4 The XRD θ−2θ scan of Al:ZnO (125 nm)/PMN-PT heterostructures is shown in 

5 Fig. S1. The (001), (002), (003) and (004) diffraction peaks of the PMN-PT substrate 

6 can be observed. Except the (002) and (004) diffraction peaks of Al:ZnO films, (101) 

7 and (110) peaks are also visible, indicating the polycrystalline properties of the films. 

8 Based on the Bragg equation, the out-of-plane lattice parameter of Al:ZnO film is 

9 ~5.201 Å. Compared to the ZnO film (5.206 Å),1 decreases of the lattice parameter of 

10 the Al:ZnO film are observed, which can be understand by the smaller ionic radii Al3+ 

11 (0.535 Å) compare to Zn2+ (0.740 Å).2 According to Debye Scherrer’s formula 

12 , the average crystalline size (Dhkl) of the Al:ZnO films was hkl hkl0.9 / cos  D

13 calculated, where λ is the wavelength of X-ray (1.5406 Å), βhkl the full width at half 

14 maximum of the (002) peak in radians and θ is the Bragg’s diffraction angle.3−7 The 

15 D002 of the Al:ZnO thin film is ~35 nm. The micro strain (ε) of the Al:ZnO thin film 

16 was determined to be ~0.98×10−3 based on the equation .3−5,8
hklcos / 4  
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2 Fig. S2 Strain vs. electric field of PMN-PT substrate. The inset shows the 

3 measurement structure diagram. The electric field was applied from zero to positive, 

4 then to negative and finally back to zero during the measurement of S−E curve.

5

6 The in-plane strain vs. electric field of the PMN-PT substrate was measured by 

7 using a strain gauge that attached to the PMN-PT surface with glue. A typical 

8 butterfly curve is obtained. The strain returns to zero after the electric field removed, 

9 which is almost volatile.
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2 Fig. S3 (a) Resistance vs. time with different pulse width measured at room 

3 temperature after poling by +10 kV/cm and −10 kV/cm. The electric field was applied 

4 along out-of-plane (001) directions. (b) Enlarged view in 0−350 s.

5

6 Except the pulse width of 20 s, the resistance switching properties of 100 ms, 

7 500 ms, 1 s and 5 s were also measured. In the all impulse width, the resistance vs. 

8 time is similar, as shown in Fig. S3. The resistance switching properties of the all 

9 impulse width are same.
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2 Fig. S4 Hall resistivity ρxy vs. magnetic field H of the Al:ZnO (125 nm)/PMN-PT 

3 heterostructure at 300 K.

4

5 To obtained the carrier density of the Al:ZnO film, the Hall effect of the Al:ZnO 

6 (125 nm)/PMN-PT heterostructure was measured at 300 K. As shown in Fig. S4, the 

7 slope of the Hall resistivity ρxy vs. magnetic field H is negative, indicating the n-type 

8 nature of the Al:ZnO film. The slope of ρxy−H is obtained by linear fitting, i.e., the 

9 Hall coefficient RH. The carrier density of ~9.3×1019 cm−3 can be obtained by 

10 , where n and e are the volume carrier density of the Al:ZnO film and the H 1/R ne 

11 elementary charge, respectively.
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2 Fig. S5 XPS spectra of the Al:ZnO film in the region of (a) Zn 2p1/3, 2p2/3 and (b) O 

3 1s peaks.

4

5 To confirm the presence oxygen vacancies in the Al:ZnO films, the XPS was 

6 measured. The XPS spectra of the Zn 2p1/3, 2p2/3 and O 1s are given in Fig. S5. The 

7 peaks of Zn 2p are located at 1021.9 eV (Zn 2p1/3) and 1044.9 eV (Zn 2p2/3), 

8 respectively.9 The O 1s XPS spectrum can be fitted into two components. One peak is 

9 around 530.2 eV (Oa), which can be attributed to the O2− ions in Al:ZnO. The other 

10 peak is around 531.6 eV (Ob), it is related to the O2− ions in the oxygen deficient 

11 regions of the Al:ZnO.10
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