The role of alkylamine in the stabilization of CuO nanoparticles as a determinant of the Al/CuO redox reaction

Ségolène Palussière,^{a,b} Jérémy Cure,^b Andrea Nicollet,^a Pierre Fau,^b Katia Fajerwerg,^b

Myrtil L. Kahn,^b Alain Estève,^a Carole Rossi*^a

^a LAAS-CNRS, The University of Toulouse, 7 Avenue du colonel Roche, F-31400 Toulouse, France

^b LCC, The University of Toulouse, 205 Route de Narbonne, F-31400 Toulouse, France

S1. Mass spectra of CuO_air (a) and CuO_O₂ (b).

Mass spectrometry analyses of both synthesized CuO NPs are performed upon heating ($10^{\circ}C.min^{-1}$) under argon atmosphere. Figure S1 shows MS results for both CuO_air and CuO_O₂. All detected m/z species, during the CuO_air and CuO_O₂ ramping are given in Table S1.

Figure S1. Mass spectra of (a) CuO_air and (b) CuO_O₂.

m/z	Molecules fragments	m/z	Molecules fragments
16	CH ₃	39	C ₃ H ₃ , HC ₂ N
17	ОН	41	CH₂=CHCH₂•
18	H ₂ O	42	$CH_2=CHCH_3^{\bullet}$, $CH_2=C=O$, NCO, NCNH ₂
26	CH≡CH, •C≡N	43	$C_3H_7^{\bullet}$, $CH_3C=O^{\bullet}$, $CH_2=CH-O^{\bullet}$, HCNO
27	CH₂=CH [●] , HC≡N	44	CO2
28	СО	54	CH ₂ =CH-CH=CH ₂
29	CH₃-CH₂ [●] , [●] CHO	55	CH ₂ =CHCHCH ₃
30	NH_2 - CH_2^{\bullet} , CH_2O , NO	82	$CH\equiv C-(CH_2)_4$
36	2 H ₂ O		

Table S1. Common neutral fragments present in mass spectra:[1]

S2. Kinetics of CO_2 (a) and H_2O (b) MS signal intensity

Figure S2. Evolution of the signal intensity for (a) CO_2 (m/z 44) and (b) H_2O (m/z 18) as a function of temperature and time (kinetics).

S3. FTIR analysis of CuO_air, CuO_O₂ samples after being washed

Cuprite phonon modes at 616 cm⁻¹ is evidenced at 200 °C for both samples, whereas they disappear at 500 °C when copper is formed. These effects are even stronger for

CuO_air with the formation of copper at 200 °C, due to the larger quantity of ligands and water at the surface.

Figure S3. FTIR spectra of annealed (a) CuO_air and (b) CuO_O₂ at 500 and 200°C under argon.

S4. X-Ray analysis of CuO_com annealed at 200 and 500 °C under argon.

The initial CuO_com structure doesn't change until 500 °C, pointing the crucial role of the ligands in the CuO reduction process below 500 °C observed for CuO_air and CuO_O₂.

Figure S4. X-ray diffraction patterns of CuO _com at 200 and 500 °C upon annealing with a ramping of 10°C.min⁻¹ and under argon.

S5. Chemical analysis of commercial CuO nanoparticles functionalized with one monolayer of OA ligands.

The FTIR characterization of CuO_com@OA shows alkyl chain of OA at the stretching mode in the area of 3000 cm⁻¹, proving that bonding is realized between OA and commercial CuO. Mixed with Al NPs, the thermal response shows an exothermic peak at 258 °C (**o**), two others ones at 580 (**i**) and 783 °C (**j**) identified as reaction between Al and CuO NPs. Before 500 °C, the exothermic peak is therefore associated to OA oxidation. XRD analysis, of annealed CuO_com@OA demonstrates that at 500 °C, CuO phase is partially reduced into Cu₂O and Cu phases. The CuO_com@OA mixed with Al exhibits a heat released of 0.79 kJ.g⁻¹ between 450 and 900 °C. This points out the role of OA in the reduction process of CuO nanoparticles but also that the CuO

remaining in the system after 500 °C, allows the exotherms reactions. Therefore, CuO nanoparticles size has to be taken into account to avoid reduction.

Figure S5a. FTIR spectra of CuO_com and CuO_com functionalized with OA. At around 3000 cm⁻¹, stretching mode of alkyl chain is identified.

Figure S5b. X-ray diffraction pattern of CuO_com@OA annealed at 500°C under argon.

Figure S5c. DSC curve of Al/CuO_com@OA.

S6. EDX analysis of mixtures composed of Al/annealed CuO NPs

Figure S6. SEM image of assembly Al/annealed CuO_air with associated EDS

analyses for Al, Cu and O elements.

References

[1] C. Bullen, P. Mulvaney, The Effects of Chemisorption on the Luminescence of CdSe Quantum Dots, Langmuir. 22 (2006) 3007–3013.