Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supporting Information for

Single Pt atom supported on penta-graphene as an efficient catalyst for CO oxidation

Ranganathan Krishnan, Shiuan-Yau Wu, and Hsin-Tsung Chen^{*} Department of Chemistry and R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan

*Corresponding author. E-mail: htchen@cycu.edu.tw (H.-T.C.); Tel: +886-3-265-3324

Figure S1. Three possible active sites for single-metal atom supported on penta-graphene: C=C, 3C and 6C sites, respectively.

Figure S2. Optimized configurations with binding energies for single Pt atom supported on different sites of penta-graphene: (a) C=C site. (b) 3C and (c) 6C, respectively.

Figure S3. The diffusion paths of Pt on penta-graphene. Red line (Path A) and black line (Path B) represent Pt atom diffuses from C=C site to 3C site and 6C site, respectively.

Atoms	Sites	E _b (eV)	Bader charge e	Diffusion barriers (eV)
Pt	C=C	3.79	0.1	
	3C	3.04	0.24	0.86 ^{red line (Path A)}
	6C	1.89	0.2	1.84 ^{black line (Path B)}
Cu	C=C	1.25	0.28	
	3C	1.24	0.43	0.06 ^{red line (Path A)}
	6C	1.13	0.43	0.11 ^{black line (Path B)}
	C=C	2.3	0.7	
	3C	2.37	0.83	0.20 ^{red line (Path A)}
Fe	6C	1.6	0.85	0.93 ^{black line (Path B)}

Table S1. The predicted binding energy E_b (eV), Bader charge and diffusion barriers (eV) for single Pt, Cu and Fe atoms supported on penta-graphene.

Figure S4. Energy profile for O_2 dissociation on the Pt/PG involving the initial state (IS), the transition state (TS) and the final state (FS).

Figure S5. Optimized adsorption configurations with calculated adsorption energies: (a) atomic O, (b) coadsorption of 2CO, (c) co-adsorption of O_2 and CO, (d) pre-adsorption of CO on adsorbed O_2 (side-on) (e) pre-adsorption of CO on adsorbed O_2 (end-on) and (f) CO₂ adsorption on the Pt/PG.

Figure S6. Energy profile for ER direct reaction mechanism of CO oxidation by dissociative adsorption of O₂ on the Pt/PG involving the initial state (IS), the transition state (TS) and the final state (FS).

Figure S7. Energy profile for ER intermediate formation mechanism by dissociative adsorption of O_2 on the Pt/PG involving the initial state (IS), the transition state (TS) and the final state (FS).