
1

A molecular contact theory for simulating 
polarization: application to dielectric constant 

prediction
Théophile Gaudin,*a and Haibo Ma*a

aKey Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, 
Nanjing University, Nanjing, 210023 China. 

e-mail: gaudin.theophile@gmail.com; haibo@nju.edu.cn

SUPPORTING INFORMATION

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2019

mailto:haibo@nju.edu.cn


2

1 Technical details about numerical simulation of molecular contacts and dimers
As stated in Section 1 of the main text, the only available computational method to deal with contacts 
between molecular surfaces up to now is the COSMO-RS method. In this method, the surface is 
considered as a virtually continuous entity and is only discretized for numerical purposes. As a 
consequence, contact probabilities between points on the surface of the molecule can be calculated up 
to virtually infinitesimal dimensions. However, real contacts between molecules should match their 
coordination number. Within COSMO-RS theory, this is achieved by introducing a universal parameter 
called effective contact area, aeff (of about 7 Å2 with some variations depending on the 
parameterisation1), into the statistical mechanical equations. For example, in the case of water, this leads 
to a coordination number of about 6 based on the surface area of water’s COSMO surface (43 Å2). 
Though this is not exactly equivalent to the real average coordination number which is slightly above 4 
in liquid water2, this number is of acceptable magnitude notably owing to the fact that all contacts are 
averaged into a single area. Nevertheless, a direct computation of contact probabilities between two 
segments from their properties and chemical potentials ultimately only covers their small surface area, 
which is just an artefact of the discretization of the used molecular surface. For nonpolar or moderately 
polar surface segments, this is not of huge importance as contacts centered on a pair of points of two 
molecular surfaces may be reasonably viewed as noncorrelated and thus one may physically interpret 
them as the probability of a contact of area aeff centered at the contact point between the two (much 
smaller) segments. 

However, for two surface segments of high and opposite polarity (i. e., typically, hydrogen-bonding 
contacts), the contact probability may be so high that two neighbouring contact segments will frequently 
be part of the same physical contact (i. e. the correlation between the contact probabilities of two 
neighboring segments is strong). In this case, some types of contacts are partially excluded from 
consideration due to the locking effect produced by the strong interaction. Thus, the number of contacts 
which are not constrained by the hydrogen-bonding scheme will be lower than what would be expected 
by just considering all possible segment pairs. Since it has been found early that for organic liquids, the 
polarization effect was low without hydrogen bonding3, in this study, the choice of neglecting the 
contributions of the non-hydrogen bonding contacts in the partition function was made. Thus, for any 
system without hydrogen bonding, <cosθ>(s,t) ended up being zero by construction. 

Moreover, to account for the correlation of contact probabilities related to hydrogen bonding (HB) 
contacts, a mean field equalization of contact probabilities for each pair of hydrogen donor (HD) and 
hydrogen acceptor (HA) conceivable for a given mixture was carried out. This required to locate the HA 
and HD hotspots. In this work, this was done in an automated, but supervised way. The atoms bearing 
HD and HA groups were identified from the surface charge densities of their above segments and the 
amount of their surface which was covered in HD or HA segments. In the case of HA, the donor pair 
geometries were identified using simple VSEPR concepts (e. g. sp2 oxygen for a C=O group). In a few 
exceptions (such as acetonitrile) this simple approach misclassified the molecule as being able to donate 
HB. These exceptions were handled manually. In a future study, the identification of HD and HA 
hotspots from molecular surfaces will be scrutinized in further detail, but this approach was sufficient 
for the needs of the present work.

To carry out the mean field equalization, the basic concept explored in this study was to:

- sum every HB contact probability and predict the probability of every HD to interact with every 
HA (and vice versa);

- replace the individual segment pair contact probabilities by the corresponding HD/HA overall 
contact probabilities;

- renormalize the full set of probabilities.
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In order to model dimerization, we devised an algorithm as follows. First, we computed the angle 
between all HD and HA pairs situated in the same structure. If it was below a convenient threshold close 
to parallel, we performed a rough collision test to eliminate dimers that would result in pair 
interpenetration by computing the distance between the two normal planes associated to the HD/HA 
pair candidate. If it was below a certain threshold, we assumed that dimerization was possible. For each 
dimer, the probability of a contact to be a dimerizing one was the sum of all probabilities of the segment 
to interact with other dimerizing segments of opposite polarity. In the special case of dimerizable 
conformations of aliphatic acids, guided by the experimental data (even butyric acid has εr of 3, close to 
that of nonpolar alkanes) we considered that the correlation of contacts imposed that these conformations 
were dimerized to an extent multiplied by the amount of dimerizable acids in the mixture. Indeed, this 
is likely to occur because it provides an optimal shielding of polar zones from a generally nonpolar 
environment. 

2 Appendix A. Relationship between polarization and electric field
Gauss Law in differential form can be expressed in both following forms, one for both free charges (i. e. 
charges which do not depend on the presence of any dipole) and bound charges and the other for bound 
charges only:
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where E is the electric field, ρ is the charge density, ε0 is the dielectric constant of vacuum ρf is the 
density of free charges, ρb is the density of bound charges, i. e. of the charges generated in a polarizable 
continuum by the presence of a dipole, and is the polarization (i. e., the density of dipole moment P
vectors). 

Combining eqs S1 and S2 and rearranging, we get:
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The Gauss law written for free charges only enables to define (constitutive equation) the permittivity ε 
of the medium producing the polarization under study as:

( S4 )  f  E

The product between the permittivity and the gradient of the electric field is called the electric 
displacement field D in electrostatics textbooks but this notion is not important in the present context 
and it thus skipped. 

Combining eqs. S3 and S4 leads to:

 or ( S5 ) 0       P E  0  P E

Inserting the definition of relative permittivity εr = ε/ε0 into eq. S5 leads to:

( S6 )  01r  P E

which is eq. 3 in the main text.
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3 Appendix B. Low-field relationship between dipole moment and electric field
The power series of a function is:
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In most cases, c = 0, so the power series of a function is the Mc Laurin series:
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When applied to a function like this:
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The value for E = 0 of this function is:
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Using some algebraic identities, it can be shown that the value of the derivative eq. S10 for E = 0 is:
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Thus, to first power, we have:
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The average value of dipole moment of any random sample of sufficiently large size under an electric 
field is computed from the Boltzmann weights of instantaneous configurations:
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where Ui is the interaction energy of the i-th configuration, mi is the dipole moment vector of this 
configuration, E is the external electric field, k is the Boltzmann constant, and T is the temperature.

Under low fields and realising that the dipole moment of our random sample at zero fields can be 
approximated as the null vector as there is no reason for it to be biased in any way in such circumstances, 
the first order Mc Laurin series of eq. S12 writes, applying eqs. S7-S11:
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which is eq. 4 of the main text. Note that in molecular dynamics simulations, the average of the dipole 
moment is not assumed to be zero because in such situation, an actual box is considered for 
measurement, which in practice will have a residual numerical dipole moment that should be subtracted 
as an artifact.
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4 Appendix C. Spherical law of cosines and free rotation approximation
Let us assume an orthogonal contact between two molecular surfaces, which are at an azimuthal angle 
of rotation φk with each other (cf. Fig. S1). We know the normal vector of both contact points, and the 
underlying dipole moment vector of the two molecules in contact. Thus, we can derive the angles 
between the dipole moment and the normal vector of both molecules (θ1 and θ2). The spherical law of 
cosines allows to calculate the angle between the two dipole moment vectors for this contact and this 
azimuthal angle:

( S15 )   12 1 2 1 2cos cos sin sin cos cosk
k          

Fig. S1 Geometric depiction of a contact between two molecular surfaces

Assuming that each azimuthal angle has an equal probability (i. e. the free rotation assumption), the 
average angle for a contact over all azimuthal angles can be calculated as:
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where Ntotal is the total number of azimuthal angles which are evaluated (sampled regularly between -π 
and π). This number should be large enough that the result is negligibly different from a continuous 
evaluation over all azimuthal angles.

Reminding the mathematical property cos x = - cos(π-x) and realising that the azimuthal angle is defined 
from -π to π, every cos φk value is cancelled by an exact opposite and eq. S16 simplifies to:

( S17 )12 1 2cos cos cos   

which is eq. 15 of the main text.

5 Computation of normal vectors
Since the above theory requires to calculate angles between the dipole moment of a structure and the 
normal vectors of segments, the normal vector has to be calculated. A large set of approaches exist to 
approximate surface normal on arbitrary surfaces. In this work, a simple approach, based on Singular 
Value Decomposition (SVD), was implemented. For each segment, a SVD is applied on the position 
vectors of the ten nearest neighbors. First, the position vectors are arranged into a 10×3 rectangular 
matrix X. This matrix is decomposed using SVD38 as:

 ( S18 )X UΣV

The normal vector is taken as the normalized third column of the 3x3 V matrix. The normal vector is 
then replaced by its negative if it points more towards the nearest atom than away from it. The approach 
works satisfactorily, as illustrated in Fig. S2 for water. Therefore, this technique is recommended if 
normal vectors on molecular surfaces are required in any future applications. 
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Fig. S2 (a) COSMO surface of water, (b) normal vectors (blue arrows) computed from COSMO 
surface coordinates using SVD.
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