Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supplementary Materials for

Seeking large spin-Seebeck effects in LaX(X=Mn and Co)O₃/SrTiO₃ superlattice by exploiting high spin-polarized effect

Jingyu Li^a, Yuanxu Wang*a, Guangbiao Zhang^a, Huabing Yin^a, Dong Chen^a, Wei Sun^a, Beibei Shi,

Zhenxiang Cheng*ab

Wollongong, Australia E-mail: <u>cheng@uow.edu.au</u> (Z. Cheng)

^a Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China E-mail: wangyx@henu.edu.cn (Y. Wang)

^b Institute for Superconducting and Electronic Materials, University of Wollongong, Squires Way, North

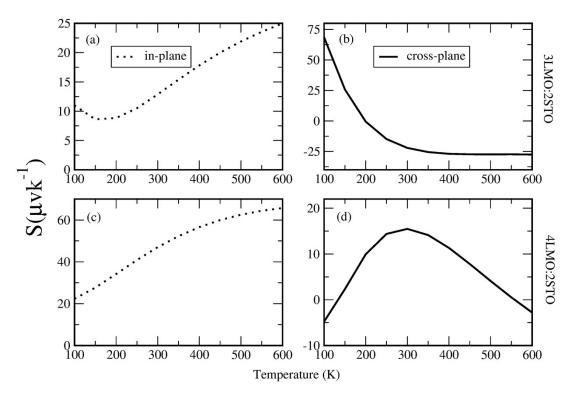


FIG. S1: Spin-Seebeck coefficients for thickness ratio of LMO/STO with (a) and (b) 3:2, (c) and (d) 4:2. The dotted and solid black line represents the in-plane and cross-plane directions, respectively.

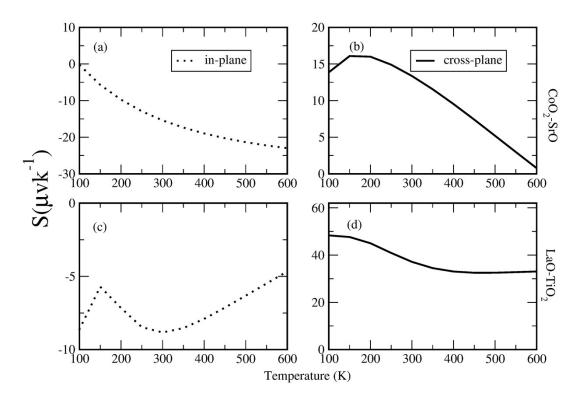


FIG. S2: Spin-Seebeck coefficients for different types of interfaces of LCO/STO with (a) and (b) pure CoO₂-STO, (c) and (d) pure LaO-TiO₂ terminations. The dotted and solid black line represents the in-plane and cross-plane directions, respectively.