Electronic Supplementary Information

Intramolecular Charge Transfer and Solvation Dynamics of Push-Pull Dyes with Different π -Conjugated Linkers

Xinmiao Niu,^{a,b} Prabhat Gautam, ^c Zhuoran Kuang, ^{a,b} Craig P. Yu, ^c Yuanyuan Guo, ^{a,b} Hongwei Song, ^{a,b} Qianjin Guo,^a Julian M. W. Chan^{*,c} Andong Xia^{*a,b}

^a Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of

China

^c Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie

Curie Pvt., Ottawa, Ontario K1N 6N5, Canada

Table of Contents

- S1. Steady-state spectral data.
- S2. Fluorescence lifetime measurements.
- **S3.** Femtosecond transient absorption experiments.
- S4. Nanosecond transient absorption experiments.
- **S5.** Electrochemical experiments.
- **S6. Electronic-state transitions.**

S1. Steady-state spectral data.

Table S1. Solvent parameters,	absorption and fluoresce	ence maxima, and	Stokes shifts
of dye 1 and dye 2.			

			1			2	
Δf^{-a}	λ_{abs}	λ_{flu}	Stokes Shifts	λ_{abs}	λ_{flu}	Stokes Shifts	
	(nm)	(nm)	(cm ⁻¹ /nm)	(nm)	(nm)	(cm^{-1} / nm)	
СНХ	0	375	413.2	2465 / 38.2	390	434.8	2642 / 44.8
CHCl ₃	0.15	378	464.8	4940 / 86.8	391	483.4	4889 / 92.4
THF	0.21	379	493.4	6118 / 114.4	389	505.4	5921 / 116.4
DCM	0.22	379	498	6305 / 119	392	511.8	5971 / 119.8
ACE	0.29	373	524.8	7755 / 151.8	386	535	7215 / 149
ACN	0.31	370	538.2	8447 / 168.2	385	556.4	8001 / 171.4

^{*a*} The polarity indices are taken from Ref 1.

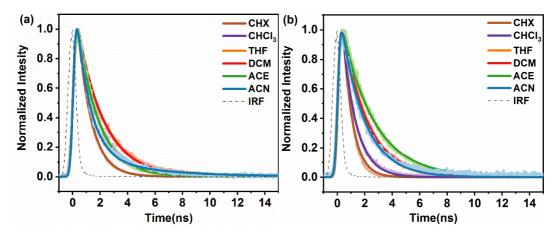
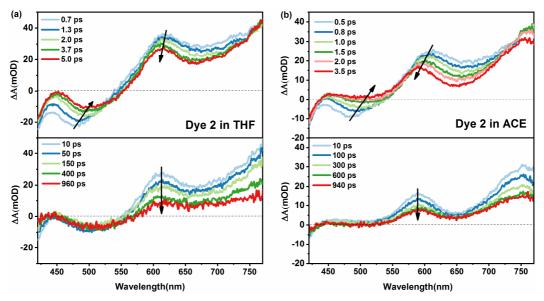
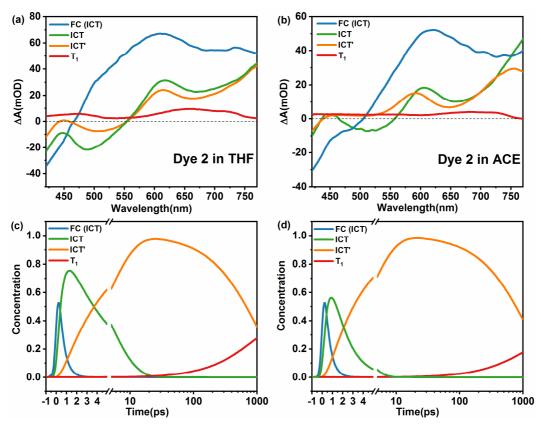
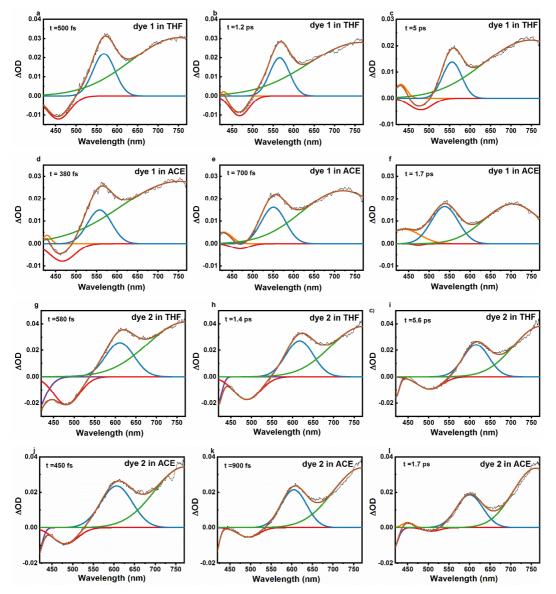
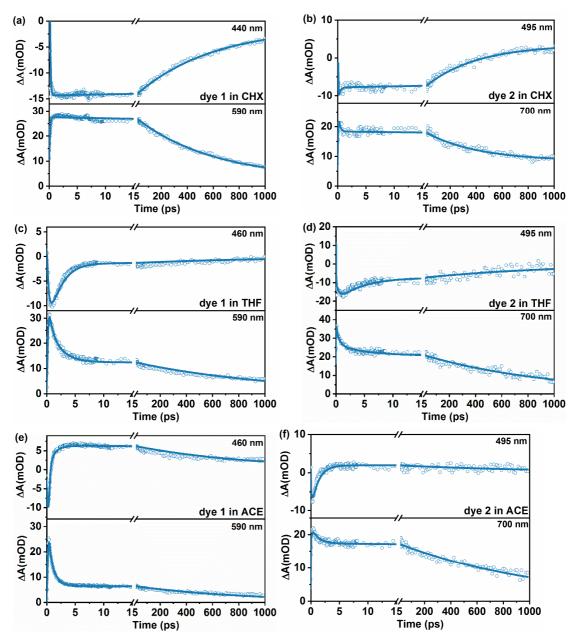




Figure S1. Fluorescence lifetimes of (a) dye 1 and (b) dye 2. Fitting results are also included.



S3. Femtosecond transient absorption experiments.


Figure S2. Femtosecond TA spectra for dye **2** (a) in THF and (b) in ACE, with different time delays.

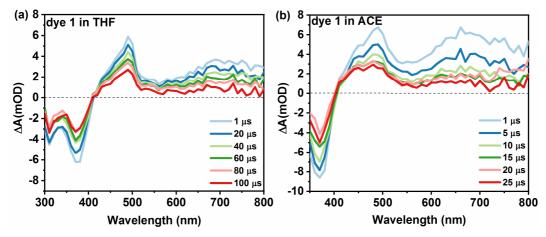

Figure S3. SADSs from target analysis and concentration evolution of transient species. On the left are two plots for dye **2** in THF, and on the right are the corresponding plots for dye **2** in ACE.

Figure S4. Selected femtosecond transient absorption spectra of dye 1 in THF (a, b, c), ACE (d, e, f), and dye **2** in THF (g, h, i), ACE (j, k, l) at three representative time delays.

Figure S5. Kinetics of femtosecond transient absorption spectra of dye **1** in: (a) CHX, (c) THF, and (e) ACE at selected wavelengths are plotted (dot) together with global fitting curves (line) of all collected time traces, and (b, d, f) are the corresponding plots for dye **2**.

S4. Nanosecond transient absorption experiments.

Figure S6. Nanosecond transient absorption spectra of dye 1 in THF and in ACE.

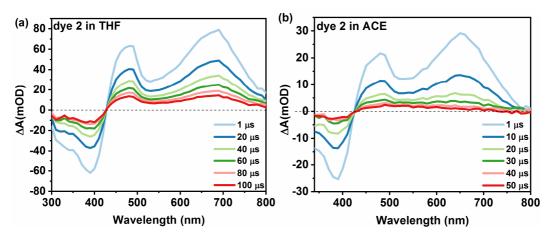


Figure S7. Nanosecond transient absorption spectra of dye 2 in THF and in ACE.

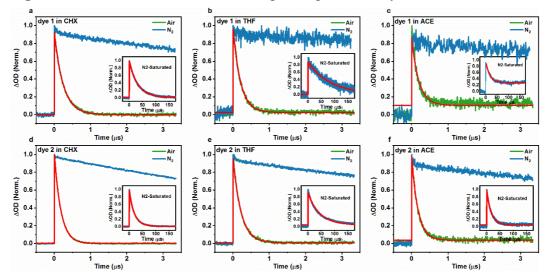


Figure S8. The kinetic traces of dye 1 and dye 2 in CHX, THF, and ACE solutions under different gas conditions (N_2 , air).

The triplet quantum yield is determined by time-resolved singlet molecular oxygen phosphorescence detection in the near-IR (1270 nm), phenalenone in D_2O is usually used as reference. Experimentally, the singlet oxygen quantum yield can be given by the following equation:

$$\int_0^\infty S_t dt = S_0 \times \frac{\tau_\Delta}{\tau_\Delta - \tau_t} \int_0^\infty [\exp(-t/\tau_\Delta) - \exp(-t/\tau_t)] dt$$
$$= S_0 \times \tau_\Delta = \kappa k_{\Delta,R} [{}^1PS^*]_0$$

where the time-integrated signals is proportional to factor of setup (κ), radiative decay of singlet oxygen ($k_{\Delta,R}$), the concentration of excited singlet species ([¹*PS*^{*}]₀), the quantum yield (Φ_{Δ}), and lifetime (τ_{Δ}) of singlet oxygen. Thus, the calculated triplet state yield is obtained by following equation:

$$\Phi_{\Delta,sample} = \Phi_{\Delta,ref} \times \frac{S_{ss,sample}}{S_{ss,ref}} \times \frac{(\kappa k_{\Delta,R} I_{abs} \tau_{\Delta})_{ref}}{(\kappa k_{\Delta,R} I_{abs} \tau_{\Delta})_{sample}}$$

	Solvent	Integrate S	I_{abs} (ΔOD)	$k_{\Delta,R}$	$ au_{\Delta}$ (µs)	Φ_{Δ}
	CHX	9.0×10 ⁴	0.31	0.44	35.6	0.19
1	THF	5.0×10 ⁴	0.31	0.41	24.4	0.17
	ACE	6.3×10 ⁴	0.29	0.39	54.4	0.11
	CHX	17×10^{4}	0.28	0.44	34.2	0.42
2	THF	8.8×10^{4}	0.3	0.41	24.7	0.30
	ACE	15×10^{4}	0.28	0.39	58.6	0.24
Phenalenone	D_2O	26×10 ⁴	0.28	0.12	81.3	0.98

Table S2. Parameters from singlet phosphorescence detection in 1270 nm

S5. Electrochemical experiments.

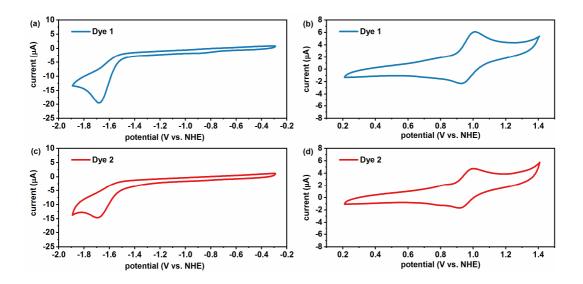


Figure S9. Cyclic voltammograms of dye 1 and dye 2 in dichloroethane with 0.1 M tetra-n-butylammonium hexafluorophosphate (Bu4NPF6) as the supporting electrolyte recorded using a scan rate of 100 mV s-1.

Table S3. Electrochemistry parameters

	$E = a \left(\mathbf{x} \right)$	$E_{red}^{a}(\mathbf{v})$ –	$\Delta \mathrm{G}^{b}\left(\mathrm{v} ight)$		
	$E_{ox}{}^{a}\left(\mathbf{v}\right)$		CHX	THF	ACN
Dye 1	0.96	1.54	-0.64	-0.48	-0.46
Dye 2	0.96	1.55	-0.47	-0.34	-0.29

^{*a*} is measured by Cyclic voltammetry as shown in Figure S9. ^{*b*} is calculated by Rehm-Weller equation from Ref 2: $\Delta G = E_{ox} - E_{red} - E_{00} + C$, The E_{00} values were obtained from the intersection of the normalized absorption and emission spectra of the fluorophores. C is the Coulombic term, which was estimated to be -0.06 eV and usually has small contribution to the overall energy change.

S6. Electronic-state transitions.

Table S4. Vertical excited energies of dye **1** and dye **2** in gas phase at their optimized ground state geometries at the TD-DFT/CAM-B3LYP/6-31G(d, p) level.

	Dy	re 1	Dye 2		
	S_1	S_2	S_1	S_2	
<i>E</i> (eV)	3.56 eV	4.35 eV	3.34 eV	4.20 eV	
	(348 nm)	(285 nm)	(371 nm)	(295 nm)	
oscillator strength	2.3298	0.1375	2.0717	0.0836	
main orbital	H→L 0.56	11.11.0.51	H→L 0.59		
contribution	H-1→L 0.27	H-1→L 0.51	H-1→L 0.29	H-1→L 0.50	

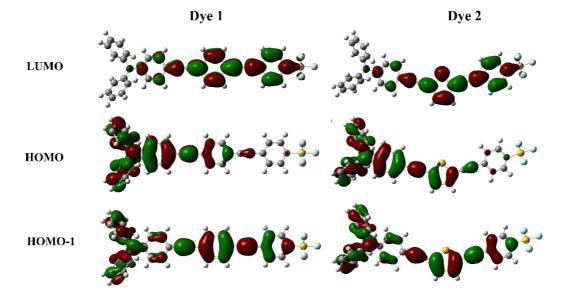


Figure S10. Electron density contours of molecular orbitals LUMO, HOMO, HOMO-1 at S_0 geometries of dye 1 and dye 2 in the gas phase.

References

(1) Horng, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M. Subpicosecond

Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited. J. Phys. Chem.

1995, *99*, 17311-17337.