Electronic Supplementary Information

Entropic selectivity in air separation via a bilayer nanoporous

graphene membrane

Song Wang,^a Sheng Dai,^{b,c} and De-en Jiang*^a

^aDepartment of Chemistry, University of California, Riverside, California 92521, United States

^bChemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831,

United States

^cDepartment of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United

States

*Corresponding author. Email: djiang@ucr.edu

Table of Contents

- 1. Definition of the effective pore size (*d*)
- 2. Comparison of flexible and frozen membranes for gas permeation.
- 3. Calculation of vibrational amplitudes of O_2 and N_2 at 300 K $\,$
- 4. Calculation of entropic selectivity
- **5.** Force field parameters

1. Definition of the effective pore size (*d*)

Fig. S1. (a) Side view and tilted view of bilayer nanoporous graphene membrane; (b) Schematic of cross section of pore (5.7 Å).

$$d = \frac{l}{\sqrt{l^2 + o^2}} \times p$$

 $l_{:}$ the interlayer distance;

o: is the offset

p: single-layer pore size.

Table S1. Five numbers of offset used in this work and corresponding effective pore sizes.

p = 5.7 Å, l = 3.4 Å						
0/Å	4.16	4.26	4.36	4.46	4.56	
d/Å	3.60	3.55	3.50	3.45	3.40	

2. Comparison of flexible and frozen membranes for gas permeation.

Fig. S2. Numbers of O_2 molecules passed through frozen (black) and flexible (red) bilayer nanoporous graphene membranes with the effective pore size of 3.60 Å. For the flexible membrane, all atoms of the membrane were allowed to move on the *xy* plane while the z coordinates as well as the center of mass of the bilayer membrane were constrained at their initial positions.

3. Calculation of vibrational amplitudes of O_2 and N_2 at 300 K

Following a previous study (E. J. Baran, *Zeitschrift für Naturforschung A*, 2003, **58**, 36-38), we have calculated the mean amplitudes of vibration of O_2 and N_2 by the following equations:

$$u_{XY}^{2} = G_{XY} \cdot \nabla_{1}$$
(1)

$$G_{XY} = \mu_{X} + \mu_{Y}$$
(2)

$$\nabla_{1} = \left[\frac{h}{8\pi^{2}\nu_{1}} \right] coth(h\nu_{1}/2kT)$$
(3)

where μ_X and μ_Y are the reduced masses of the atoms X and Y, in the current case being X=Y (O or N atom), and ν_1 is the characteristic vibrational frequency (ν_1) of the bond (1568 cm⁻¹ for O₂ and 2446 cm⁻¹ for N₂). Thus, at 300 K, the calculated mean amplitudes of vibration (∇_1) are 0.0367 Å for O₂ and 0.0314 Å for N₂.

4. Calculation of entropic selectivity

According to transition state theory of diffusion,^{1, 2} the O_2/N_2 entropic diffusion selectivity can be written as:

$$\binom{D_{O_2}}{D_{N_2}}_{entropic} = \exp\left(\frac{S_{D,O_2} - S_{D,N_2}}{R}\right) = \frac{(F^{\neq}/F)_{O_2}}{(F^{\neq}/F)_{N_2}}$$

where *D* is diffusion, *S* is entropy, *F* is partition function for normal state, and F^{\neq} is partition function for transition state. The partition function includes translational, rotational, and vibrational contributions, as shown below:

$$F = F_{trans} \cdot F_{rot} \cdot F_{vib}, \ F_{trans} = \left(\frac{2\pi mkT}{h^2}\right)^{n/2} a^n, \ F_{rot} = \left(\frac{T}{\sigma\theta_r}\right)^{n/2}, \qquad \left(\frac{F_{vib}}{1 - \exp\left(-\frac{\theta_v}{2T}\right)}\right)^{n/2} e^{-\frac{1}{2}\pi mkT}$$

where *n* is degree of freedom, *m* is mass of molecule, *k* is Boltzmann constant, *h* is Planck constant, *a* is cavity length (which is the difference between gas molecular width and the elliptical pore size²), σ is symmetry number of gas molecule, θ_r is characteristic rotational temperature, θ_v is characteristic vibrational temperature. In the transition state, all two rotational degrees of freedom of N₂ is suppressed, while O₂ still keeps one unconstrained rotational degrees of freedom. And in the transition state, both of N₂ and O₂ are believed to only have two translational degrees

kТ

of freedom, since the factor \overline{h} accounts for the translational degree of freedom in the direction of gas diffusion. The vibrational degrees of freedom of N₂ and O₂ are unrestricted in both normal and

transitional state.¹ Thus, the vibrational partition functions are cancelled out. Table S2 shows the parameters used in calculations. According to these functions and parameters, the O_2/N_2 entropy difference is 5.67 cal/K and entropic diffusion selectivity is 17.3 at 300 K.

Table S2. Parameters used in entropic selectivity calculation when effective pore size of 3.45 Å^{1, 2}

	O ₂	N ₂
a for normal state / Å	100	100
<i>a</i> for transition state / Å	0.77 for short axis 2.85 for long axis	0.36 for short axis 2.01 for long axis
σ	2	2
θ_r	2.07	2.88

5. Force field parameters

5.1. Gas molecules

	-	-				
O_2						
	ε (kcal/mol)	σ (Å)	q (e)			
0	0.108	3.050	-0.1120			
СОМ	0	0	0.2240			
bonds	length (Å)					
0-0	1.21					
]	N ₂				
	ε (K)	σ (Å)	q (e)			
Ν	0.0728	3.318	-0.4048			
СОМ	0	0	0.8096			
bonds	length (Å)					
N-N	1.098					
				_		

Table S3. Force field parameters for gas molecules³

5.2. Porous graphene

	ε (kcal/mol)	σ (Å)
С	0.086	3.400
Н	0.015	2.450

Table S4. Lennard-Jones parameters for the bilayer porous graphene membrane⁴

Cartesian coordinates (Å) and partial atomic charges on the single-layer porous graphene

Rectangular unit cell: a=24.6076 Å, b=25.7308 Å

	q / e	Х	У
С	-0.008	5.660565	7.186368
С	0.017	6.891031	7.901653
С	-0.021	8.121366	7.186365
С	0.084	9.351711	7.901561
С	0.091	10.582106	7.186303
С	-0.333	11.812498	7.901617
С	0.201	13.042896	7.186299
С	-0.333	14.273285	7.901627
С	0.090	15.503616	7.186307
С	0.085	16.733982	7.901628
С	-0.021	17.964414	7.186293
С	0.017	19.194780	7.901614
С	-0.008	20.425110	7.186295
С	0.005	21.655501	7.901623
С	0.000	22.885898	7.186305
С	0.000	24.116291	7.901618
С	0.000	0.739085	7.186360
С	0.000	1.969431	7.901556
С	0.001	3.199765	7.186269
С	0.004	4.430231	7.901553
С	-0.022	5.660566	11.474811
С	0.015	5.660565	10.045806
С	0.088	6.891030	12.190132
С	-0.332	8.121367	11.474808
С	-0.024	6.891032	9.330482
С	0.199	8.121364	10.045809
С	-0.331	9.351714	9.330574
С	-0.332	17.964414	11.474736

С	-0.331	16.733989	9.330507
С	0.200	17.964408	10.045881
С	0.088	19.194781	12.190093
С	-0.022	20.425110	11.474739
С	-0.025	19.194787	9.330521
С	0.015	20.425103	10.045879
С	-0.006	21.655501	12.190100
С	0.007	22.885897	11.474749
С	-0.008	21.655508	9.330513
С	0.002	22.885891	10.045868
С	-0.002	24.116291	12.190096
С	-0.001	0.739085	11.474804
С	-0.001	24.116295	9.330517
С	0.000	0.739083	10.045813
С	-0.002	1.969431	12.190036
С	0.007	3.199765	11.474711
С	-0.001	1.969431	9.330579
С	0.002	3.199765	10.045905
С	-0.007	4.430231	12.190033
С	-0.008	4.430231	9.330582
С	0.015	5.660565	15.763292
С	-0.022	5.660565	14.334252
С	-0.024	6.891031	16.478598
С	0.200	8.121366	15.763289
С	0.088	6.891032	13.618961
С	-0.332	8.121364	14.334255
С	-0.331	9.351711	16.478504
С	-0.331	16.733982	16.478571
С	0.200	17.964414	15.763219
С	-0.332	17.964408	14.334325
С	-0.024	19.194781	16.478556
С	0.015	20.425110	15.763223
С	0.088	19.194787	13.619002
С	-0.022	20.425103	14.334322
С	-0.008	21.655501	16.478562
С	0.002	22.885897	15.763233
С	-0.006	21.655508	13.618995
С	0.007	22.885891	14.334312
С	-0.001	24.116291	16.478560
С	0.001	0.739084	15.763286
С	-0.002	24.116295	13.618998
С	-0.001	0.739083	14.334259
С	-0.001	1.969431	16.478501

С	0.002	3.199765	15.763192
С	-0.002	1.969431	13.619058
С	0.007	3.199765	14.334352
С	-0.008	4.430231	16.478498
С	-0.006	4.430231	13.619061
С	0.001	5.660566	20.051730
С	-0.008	5.660565	18.622753
С	0.010	6.891031	20.767080
С	-0.008	8.121366	20.051727
С	0.017	6.891031	17.907403
С	-0.021	8.121365	18.622755
С	-0.005	9.351711	20.766986
С	-0.025	10.582106	20.051668
С	0.084	9.351714	17.907496
С	0.091	10.582101	18.622814
С	0.018	11.812498	20.767038
С	-0.028	13.042896	20.051666
С	-0.333	11.812506	17.907444
С	0.201	13.042888	18.622816
С	0.018	14.273286	20.767048
С	-0.025	15.503616	20.051673
С	-0.333	14.273294	17.907434
С	0.090	15.503609	18.622810
С	-0.005	16.733982	20.767053
С	-0.008	17.964414	20.051657
С	0.085	16.733989	17.907430
С	-0.021	17.964408	18.622825
С	0.010	19.194780	20.767037
С	0.001	20.425111	20.051662
С	0.017	19.194787	17.907445
С	-0.008	20.425103	18.622821
С	-0.001	21.655500	20.767044
С	0.000	22.885898	20.051672
С	0.005	21.655508	17.907439
С	0.000	22.885891	18.622811
С	0.000	24.116290	20.767042
С	0.000	0.739085	20.051724
С	0.000	24.116295	17.907440
С	0.000	0.739082	18.622758
С	0.000	1.969430	20.766983
С	0.001	3.199766	20.051630
С	0.000	1.969431	17.907499
С	0.000	3.199765	18.622852

С	-0.001	4.430230	20.766980
С	0.005	4.430231	17.907502
С	0.000	5.660565	24.340230
С	0.001	5.660565	22.911191
С	0.000	6.891032	25.055521
С	0.000	8.121365	24.340227
С	-0.004	6.891031	22.195885
С	-0.002	8.121365	22.911193
С	0.000	9.351712	25.055428
С	-0.001	10.582105	24.340168
С	0.007	9.351714	22.195978
С	0.002	10.582101	22.911253
С	0.001	11.812499	25.055482
С	0.000	13.042895	24.340165
С	-0.008	11.812505	22.195926
С	0.004	13.042888	22.911255
С	0.001	14.273286	25.055492
С	-0.001	15.503616	24.340172
С	-0.008	14.273293	22.195916
С	0.002	15.503609	22.911248
С	0.000	16.733982	25.055495
С	0.000	17.964414	24.340157
С	0.007	16.733989	22.195912
С	-0.002	17.964407	22.911263
С	0.000	19.194780	25.055480
С	0.000	20.425111	24.340161
С	-0.004	19.194788	22.195927
С	0.001	20.425102	22.911259
С	0.000	21.655500	25.055487
С	0.000	22.885899	24.340171
С	-0.001	21.655509	22.195920
С	0.001	22.885890	22.911249
С	0.000	24.116290	25.055485
С	0.000	0.739086	24.340224
С	0.000	24.116296	22.195922
С	0.000	0.739081	22.911197
С	0.000	1.969430	25.055425
С	0.000	3.199766	24.340131
С	0.000	1.969433	22.195981
С	0.001	3.199764	22.911290
С	0.000	4.430231	25.055422
С	-0.001	4.430231	22.195984
С	0.001	5.660565	2.897877

С	0.000	5.660566	1.468871
С	-0.004	6.891031	3.613200
С	-0.002	8.121365	2.897874
С	0.000	6.891031	0.753550
С	0.000	8.121365	1.468874
С	0.007	9.351711	3.613108
С	0.002	10.582105	2.897812
С	0.000	9.351713	0.753643
С	-0.001	10.582101	1.468935
С	-0.008	11.812499	3.613164
С	0.004	13.042895	2.897808
С	0.001	11.812505	0.753588
С	0.000	13.042888	1.468939
С	-0.008	14.273286	3.613174
С	0.002	15.503615	2.897816
С	0.001	14.273293	0.753578
С	-0.001	15.503609	1.468932
С	0.007	16.733983	3.613176
С	-0.002	17.964414	2.897802
С	0.000	16.733988	0.753575
С	0.000	17.964408	1.468946
С	-0.004	19.194780	3.613161
С	0.001	20.425111	2.897804
С	0.000	19.194788	0.753590
С	0.000	20.425102	1.468943
С	-0.001	21.655500	3.613170
С	0.001	22.885899	2.897814
С	0.000	21.655509	0.753583
С	0.000	22.885890	1.468933
С	0.000	24.116290	3.613165
С	0.000	0.739086	2.897869
С	0.000	24.116296	0.753586
С	0.000	0.739082	1.468878
С	0.000	1.969430	3.613104
С	0.001	3.199766	2.897777
С	0.000	1.969432	0.753647
С	0.000	3.199765	1.468971
С	-0.001	4.430231	3.613100
С	0.000	4.430231	0.753649
С	0.000	5.660565	5.757314
С	0.010	6.891031	5.042030
С	-0.008	8.121365	5.757318
С	-0.005	9.351714	5.042122

С	-0.025	10.582101	5.757380
С	0.018	11.812505	5.042066
С	-0.028	13.042888	5.757384
С	0.018	14.273293	5.042056
С	-0.025	15.503609	5.757375
С	-0.005	16.733988	5.042054
С	-0.008	17.964408	5.757389
С	0.010	19.194788	5.042068
С	0.000	20.425102	5.757388
С	-0.001	21.655509	5.042060
С	0.000	22.885891	5.757378
С	0.000	24.116296	5.042064
С	0.000	0.739082	5.757322
С	0.000	1.969432	5.042126
С	0.000	3.199765	5.757414
С	-0.001	4.430231	5.042129
Н	0.170	11.815930	9.041611
Н	0.170	14.276745	9.041621
Н	0.169	9.110362	12.041808
Н	0.168	10.338985	9.900572
Н	0.169	16.975414	12.041728
Н	0.168	15.746723	9.900511
Н	0.169	9.110349	13.767239
Н	0.168	10.338978	15.908502
Н	0.168	15.746711	15.908575
Н	0.169	16.975422	13.767310
Н	0.170	11.815981	16.767449
Н	0.170	14.276799	16.767439

References

1	A. Singh and	W. Koros, In	d. Eng.	Chem.	Res.,	1996, 35	, 1231-	-1234.
	0					,	, -	

- 2 X. Ning and W. J. Koros, *Carbon*, 2014, **66**, 511-522.
- 3 Y. Sun and S. Han, *Mol. Simulat.*, 2015, **41**, 1095-1109.
- 4 Z. Tian, S. M. Mahurin, S. Dai and D.-e. Jiang, *Nano Lett.*, 2017, **17**, 1802-1807.