Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

## 1 Supplementary materials:

- 2 The geometry optimization of monomer and dimer in two different configurations (with S-H-
- 3 --O interaction and with S---O interaction) is carried using B3LYP functional with 6-311 G(d,
- 4 p). Thus, on the basis of DFT calculation (calculated energy and H-bond length), it is concluded
- 5 that monomer and dimer with S---O interaction is more possible than with S-H---O interaction.
- 6 Further, DFT calculation of monomer and dimer with S---O interaction is done using the basis
- 7 set 6-311++G(d, p) as shown in Fig. S1 (V).



9 FIG. S1. Optimized geometry and corresponding energy of monomer and dimer calculated by10 DFT method.



MEP value depicts the local electron density in molecule.

12 FIG. S2. DFT calculated MEP surface of (a) 2-MBA monomer, (b) self-associated 2-MBA

13 dimer, depicting the adsorption sites.

14

11



16 FIG. S3. Normal Raman and SERS spectra of 2-MBA in region 1180- 1750 cm<sup>-1</sup>.



18 FIG. S4. Normal Raman and SERS spectra of 2-MBA at 0.01 M (a) region 50- 500 cm<sup>-1</sup> and 19 (b) region 500-  $3500 \text{ cm}^{-1}$ .



21 FIG. S5. Raman spectrum of bare ZnO nanoparticles

## 31 TABLE S1. (Raman/SERS bands including with bands described in TABLE 1.)

32 Observed normal Raman and SERS bands and their corresponding assignment for 2MBA monomer (MN) and

33 dimer (DM) with the help of DFT calculations using B3LYP functional and 6-311++G(d, p) basis set and earlier

34 reported literature <sup>[34-38]</sup>. The symmetry label of modes of 2-MBA monomer and dimer molecules are assigned

35 on the basis of group theory and DFT calculation.

| Raman       |        | Symmetry*      | Vibrational Assignments                                                  | Vibrational Assignments                                                   |
|-------------|--------|----------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|
| (2-MBA: MN) | SERS   |                | Monomer                                                                  | Dimer                                                                     |
|             |        |                |                                                                          |                                                                           |
| 3064 (A')   | 3064   | Ag             | ν(C-H)                                                                   | v(C-H)                                                                    |
| 3051 (A')   | 3051   | Ag             | ν(C-H)                                                                   | v(C-H)                                                                    |
|             | 2930   | Ag             |                                                                          | $\nu$ (O-HO); symmetric mode of H-bonded                                  |
|             |        |                |                                                                          | carboxyl ring                                                             |
|             | 2427   | Ag             |                                                                          | v(S-H)                                                                    |
| 1585 (A')   | 1585   | B <sub>u</sub> | v(CC); asymmetric                                                        | v(CC); asymmetric                                                         |
| 1562 (A')   | 1562   | Ag             | v(CC); symmetric                                                         | v(CC); symmetric                                                          |
| 1462 (A')   | 1462   | Ag             | $v_{asym}(CC) + \delta(C-H)$                                             | $v_{asym}(CC) + \delta(C-H)$                                              |
| 1433 (A')   | 1433   | Bu             | $v_{\text{sym}}(\text{CC}) + \delta(\text{C-H})$                         | $v_{\rm sym}(\rm CC) + \delta(\rm C-H)$                                   |
| 1416 (A')   | 1416   | Ag             | $\nu(CC) + \delta(C-H) + \delta(O-H)$                                    | $\nu(CC) + \delta(C-H) + \delta(O-H)$                                     |
|             | 1347   | B <sub>u</sub> |                                                                          | asymmetric ring stretching $+\delta(\text{O-H})_{\text{carboxyl ring}}$   |
| 1271 (A')   | 1271   | Ag             | $\delta$ (O-H) + $\delta$ (C-H) + $\nu$ (CC)                             | $\delta$ (O-H) + $\delta$ (C-H) + $\nu$ (CC)                              |
| 1164 (A')   | 1164   | Ag             | $\delta$ (C-H)                                                           | $\delta$ (C-H)                                                            |
| 1152 (A')   | 1152   | Ag             | $\delta$ (C-H) + v(CC)                                                   | $\delta$ (C-H) + v(CC)                                                    |
| 1120 (A')   | 1120   | Ag             | $\delta$ (CCC)+ v(C-S) + v(C-OH)                                         | $\delta(CCC) + \nu(C-S) + \nu(C-OH)$                                      |
| 1053 (A')   | 1053   | Ag             | asymmetric ring breathing                                                | asymmetric ring breathing mode                                            |
|             | 100-   |                | mode                                                                     |                                                                           |
| 1037 (A')   | 1037   | Ag             | symmetric ring breathing                                                 | symmetric ring breathing mode                                             |
|             | 932    | A              |                                                                          | $\nu$ (O-H): symmetric mode of H-bonded                                   |
|             |        | u              |                                                                          | carboxyl ring                                                             |
| 884 (A")    | 884    | B <sub>σ</sub> | ω(C-H)                                                                   | ω(C-H)                                                                    |
| 731 (A")    | 731    | B <sub>σ</sub> | ω(C-H)                                                                   | ω(C-H)                                                                    |
|             | 672    | A <sub>g</sub> | $\delta_{\text{sym}}(\text{COOH}) + \delta(\text{CCC}) + \nu(\text{C-})$ | $\delta_{\text{sym}}(\text{COOH}) + \delta(\text{CCC}) + \nu(\text{C-S})$ |
|             |        | 5              | S)                                                                       |                                                                           |
| 648 (A')    | 648    |                | γ(O-H)                                                                   |                                                                           |
| 496 (A")    | 498    | Bg             | γ(CCC); asymmetric                                                       | γ(CCC); asymmetric                                                        |
|             | 398    | A <sub>u</sub> |                                                                          | $\gamma$ (S-H); symmetric                                                 |
| 384 (A")    | 380    | Bg             | γ(S-H)                                                                   | $\gamma$ (S-H); asymmetric                                                |
| 322 (A')    | 322    | Ag             | $\delta(\text{CCC})_{\text{bz ring}} + \delta(\text{CC=O})$              | $\delta(\text{CCC})_{\text{bz ring}} + \delta(\text{CC=O})$               |
| 280 (A')    | 280    | Ag             | $\delta$ (HSPh-COOH) + $\delta$ (CCS)                                    | $\delta$ (HSPh-COOH) + $\delta$ (CCS)                                     |
| 216 (A")    | 216    | Bg             | $\delta$ (HSPh-COOH)                                                     |                                                                           |
| 165 (A')    | 164    | A <sub>u</sub> | γ(HSPh-COOH); symmetric                                                  |                                                                           |
| 147 (A')    | 147    | Bg             | τ(HSPh-COOH)                                                             | τ(HSPh-COOH); symmetric                                                   |
|             | 139    | A <sub>u</sub> |                                                                          | τ(HSPh-COOH); asymmetric                                                  |
| 122 (A")    | 125    | A <sub>u</sub> | $\gamma$ (HSPh-COOH); asymmetric                                         | γ(HSPh-COOH); asymmetric                                                  |
|             | 110    | Ag             |                                                                          | shear dimer stretching                                                    |
| 100 (A')    | 98     | Ag             | t(-SH) + t(-COOH)                                                        | t(-SH) + t(-COOH)                                                         |
| 92 (A')     |        |                | t(-SH)                                                                   |                                                                           |
|             | 90     | Ag             |                                                                          | shear dimer in-plane bending                                              |
| 58 (A")     | 59 →64 | Bg             | t(-COOH) + t(-SH)                                                        | t(-COOH) + t(-SH)                                                         |
|             |        |                |                                                                          | •                                                                         |

36

- 37 *v*: stretching,  $\delta$ : in-plane bending,  $\gamma$ : out-of-plane bending,  $\tau$ : torsion,  $\omega$ : wagging, t: twisting, HSPh:
- 38 2mercaptophenyl, sym: symmetric, asym: asymmetric, bz: benzene, {(MN)/(DM)}: representation of symmetry
- 39 species of monomer (MN) and dimer (DM), Symmetry\*: symmetry label of corresponding Raman modes of
- 40 dimer
- 41
- 42
- 43



- 45 FIG. S6. Experimental Raman/SERS spectra of 2-MBA and DFT calculated Raman spectra
- 46 of monomer and dimer (The spectra is further splited into four sections for precise analysis)
- 47