Ferroelectric Nanocomposite Networks with High Energy Storage Capacitance and Low Ferroelectric Loss by Designing Hierarchical Interface Architecture

Yingxin Chen, ^a Yifeng Yue,^a Jie Liu,^c Jie Shu,^e Aiping Liu,^d Baojin Chu,^c Minhui Xu,^a Weizhong Xu,^d Tong Chen,^a Jian Zhang^a*, Qundong Shen^b*

- a. College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
- b. Key Laboratory of High Performance Polymer Materials and Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
- c. CAS Key Laboratory of Materials for Energy Conversion and Department of Materials Science and Engineering, University of Science and Technology of China, No. 96 Jinzhai Rd., Hefei, Anhui, 230026, China
- d. Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Hangzhou,
- 310018, China.
- e. Analysis and Testing Center, Soochow University, Suzhou, 215123, China.

Figure S1. Schematic illustration of the mechanism of the cross-linking reactions in P(VDF-CTFE)/MPS@BT nanocomposite networks.

Table S1. Lattice constant and coherence length for the (200, 020) reflection of P(VDF-CTFE)/MPS@BT nanocomposites (B_0 , B_5 , B_{10} , and B_{15}) and nanocomposite networks ($B_{10}P_{10}$, and $B_{10}P_{15}$).

	α-phase		β-phase	
	d, Å (020)	L, nm	D, Å(100, 200)	<i>L</i> , nm
P(VDF-CTFE)	4.48	11.0	4.32	6.7
\mathbf{B}_5	4.43	10.3	4.28	7.3
B_{10}	4.46	9.7	4.30	8.1
B ₁₅	4.45	8.1	4.29	9.0
$B_{10}P_{10}$	4.43	7.3	4.31	6.2
$B_{10}P_{15}$	4.46	6.5	4.31	5.8

Sample	T _m (°C)	Crystallinity (%)
P(VDF-CTFE)	173	23.6
B ₅	171	25.2
B ₁₀	172	25.4
B ₁₅	171	26.1
$B_{10}P_{10}$	169	22.4
$B_{10}P_{15}$	168	21.7

Table S2. Melting temperature (T) and the relative crystallinity of the P(VDF-CTFE)/MPS@BT nanocomposites and nanocomposite networks calculated from DSC curves.

Figure S2. FTIR spectrum of (a) P(VDF-CTFE) and P(VDF-CTFE)/MPS@BT nanocomposites (B₅, and B₁₀).

Figure S3. Unipolar D-E hysteresis loops for P(VDF-CTFE)/MPS@BT nanocomposites (a) B_0 , (b) B_5 , (c) B_{10} , and (d) B_{15} .

Figure S4. Unipolar D-E hysteresis loops for P(VDF-CTFE)/MPS@BT nanocomposite networks (a) $B_{10}P_{10}$, (b) $B_{10}P_{15}$, and (c) $B_{10}P_{20}$.