Supplementary Information

A DFT+U revisit on reconstructed CeO₂(100) surfaces:

structures, thermostabilities and reactivities

Chong-Yuan Zhou, Dong Wang and Xue-Qing Gong*

Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China

Figure S1 Structures of the intact (a, b) and reconstructed (c-e) $CeO_2(100)$ surfaces from the side views. (a) Intact $CeO_2(100)$ with a full layer of surface O; (b) intact $CeO_2(100)$ with a full layer of surface Ce; (c) reconstructed O-t surface with a half-layer of surface O; (d) reconstructed CeO₄-t surface modeled by introducing CeO₂ units onto the O-t surface; (e) reconstructed Ce-t surface with a half-layer of surface Ce.

Figure S2 Calculated spin charge plots and average E_{Ov} values (per O_v) of O_v at the O^A site on the CeO₄-t surface using a $p(4 \times 4)$ model at the O_v concentration of (a) 100%, (b) 50%, and (c) 25%, respectively.

Figure S3 Calculated spin charge plots (side and top views) of the reduced CeO₄-t surfaces with the O_v at the (top row) O^A , (middle) O^B and (bottom) O^C sites, respectively, with both the most and less stable electronic configurations for the distributions of the localized electrons.

Figure S4 Calculated structures and relative energies of CO adsorption on the CeO₄-t surface. The calculated adsorption energy for CO at O^B (a) is 0.28 eV and it is taken as the reference.

Figure S5 Calculated structures of transition states of CO oxidation via the channel of the (a) O^A , (b) O^B and (c) O^C on the CeO₄-t surface using a $p(4 \times 4)$ model. The corresponding reaction barriers are also listed.

Figure S6 Calculated structures of the (a) carbonates species formed via the O^{C} channel and (b) the linear CO₂ via the O^A channel using a $p(4 \times 4)$ model.

Figure S7 Calculated formation energies and structures of the carbonate species on (a-c) the CeO₄-t type of reconstructed CeO₂(100) from our work and (d) on the CeO₂(100) surface reported by Mullins and co-workers. (ref. 39 in the main text).

Figure S8 Calculated structures and energetics of CO oxidation from our results on the CeO₄-t surface (top row) and the corresponding reverse processes of CO₂ reduction on the defective CeO₂(110) reported by Lo and co-workers (bottom row; ref. 40 in the main text).