Supporting Information for:

Au₂₂(L⁸)₆ Nanocluster with *in situ* Uncoordinated Au as Highly Active

Catalyst for O₂ Activation and CO Oxidation

Fuhua Li and Qing Tang*

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing

401331, China

*To whom correspondence should be addressed. E-mail: <u>qingtang@cqu.edu.cn</u>.

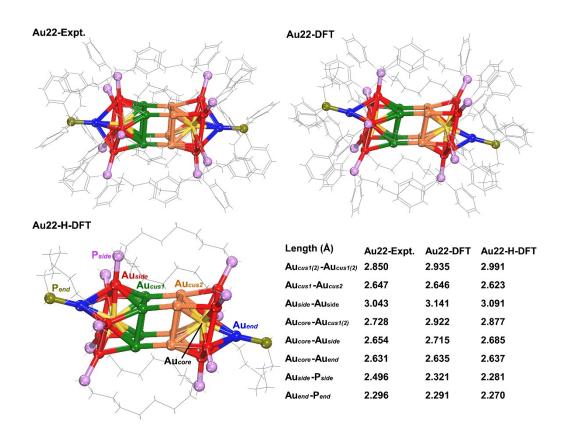
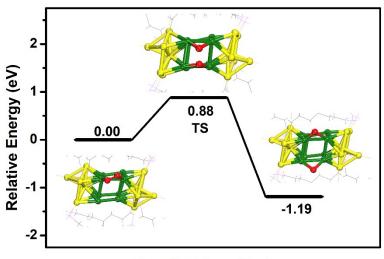



Fig. S1. The geometric structures and bond parameters of $Au_{22}(L^8)_6$ nanocluster, where Au_{22} -Expt. and Au_{22} -DFT denotes the experimental and DFT-optimized structure based

on the experimental L^8 ligands, $Au_{22}(L^8)_6$, where $L^8 = 1,8$ -bis(diphenylphosphino) octane, while Au_{22} -H-DFT represents the simplified model by replacing the bulky phenyl groups of the L^8 ligands with H atoms.

Reaction Coordinate

Fig. S2. The reaction pathway for dissociation of the chemisorbed O_2 on $Au_{22}(L^8)_6$ calculated at the GGA+U level ($U_{eff} = 5.0 \text{ eV}$).

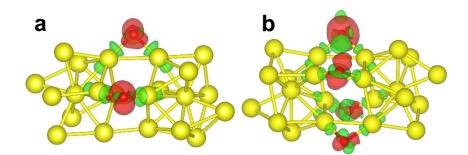


Fig. S3. The charge density difference of $Au_{22}(L^8)_6$ with two and four adsorbed O atoms, $Au_{22}(L^8)_6O_2$ for (a) and $Au_{22}(L^8)_6O_4$ for (b). The red and green region represents the electron accumulation and depletion, respectively.