The mechanism of Thiophene oxidation on Metal-free Two-dimensional Hexagonal Boron Nitride

Naixia Lv^a, Linghao Sun^b, Linlin Chen^b, Yujun Li^b, Jinrui Zhang^b, Peiwen Wu^b, Hongping Li

°*, Wenshuai, Zhu^{b*}, Huaming, Li^c

^[a]College of Biology and Chemistry, Xingyi Normal University For Nationalities, Xingyi, 562400,

P. R. China

^[b]School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R.

China

^[c]Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R.China.

*Corresponding author:

E-mail: hongpingli@ujs.edu.cn (H. P. Li); zhuws@ujs.edu.cn (W. S. Zhu)

(d)

(b)

(f)

FIGURE S1 Thiophene (C₄H₄S) adsorption on perfect h-BN, armchair, zig-B, zig-N, B-vacancy, N-vacancy models.(a) perfect h-BN-C₄H₄S; (b)arm-C₄H₄S; (c)zig-B-C₄H₄S; (d) zig-N-C₄H₄S; (e) B-vacancy-C₄H₄S; (f) N-vacancy-C₄H₄S;

FIGURE S2 The oxidation of thiophene on zig-B models. (a) OO/C₄H₄S co-adsorption; (b)TS1-zig-B; (c)IM1-zig-B; (d) TS2-zig-B; (e) FS-zig-B

FIGURE S3 The oxidation of thiophene on armchair models.(a) OO/C_4H_4S co-adsorption; (b)TS1-arm; (c)IM1-arm; (d) TS2-arm; (e) FS-arm

1.646A 1.865A

FIGURE S4 The oxidation of thiophene on N-vacancy models.(a) OO/C_4H_4S co-adsorption; (b)TS1- N-vacancy; (c)IM1-N-vacancy; (d) TS2-N-vacancy; (e) FS-N-vacancy

(b)

species	E _{elec}	H ₂₉₈	G ₂₉₈	ΔH_{298}	ΔG_{298}
O ₂	-150.3646757	-150.3575887	-150.38087		
Thiophene(TH)	-553.0696341	-552.9977261	-553.02999		
zig-B	-1841.38816	-1840.966526	-1841.0593		
2O-zig-B	-1992.211342	-1991.776248	-1991.8678	-283.719	-268.363
O ₂ -zig-B	-1992.043858	-1991.609428	-1991.7024	-179.037	-164.568
TH-zig-B	-2394.499474	-2394.003282	-2394.1058	-24.492	-10.3815
2O-TH- zig-B	-2545.2809	-2544.772365	-2544.8777	-282.708	-255.754
TS1-zig-B	-2545.063461	-2544.558438	-2544.6647	-148.467	-122.096
IM1-zig-B	-2545.223394	-2544.714633	-2544.8163	-246.481	-217.22
TS2-zig_B	-2545.072766	-2544.566621	-2544.6674	-153.602	-123.764
FS-zig-B	-2545.088175	-2544.578966	-2544.683	-161.349	-133.543
zig-N	-1841.297632	-1840.888720	-1840.9833		
2O-zig_N	-1991.748461	-1991.326596	-1991.4256	-50.3809	-38.5479
O ₂ -zig-N	-1991.693744	-1991.274590	-1991.3743	-17.7465	-6.376
TH-zig_N	-2394.418015	-2393.933549	-2394.0395	-29.5575	-16.445
2O-TH-zig-N	-2544.916424	-2544.418826	-2544.5259	-109.683	-82.6373
TS1-zig-N	-2544.769035	-2544.277822	-2544.3915	-21.2013	1.692143
IM1-zig-N	-2544.909155	-2544.412331	-2544.5196	-105.608	-78.6824
TS2-zig-N	-2544.903189	-2544.407159	-2544.5123	-102.362	-74.1244
FS-zig-N	-2544.972614	-2544.473852	-2544.5805	-144.213	-116.951
armchair	-1681.422603	-1681.040501	-1681.1289		
2O-armchair	-1831.857263	-1831.465501	-1831.5596	-42.3011	-31.2255
O ₂ -armchair	-1831.798076	-1831.407337	-1831.5031	-5.80277	4.210404
TH-armchair	-2234.512312	-2234.056281	-2234.1583	-11.3289	0.363454
2O-TH-armchair	-2384.953394	-2384.487844	-2384.5964	-57.7484	-35.5396
TS1-armchair	-2384.90218	-2384.439207	-2384.5405	-27.2282	-0.43976
IM1-armchair	-2384.927831	-2384.462768	-2384.5677	-42.0127	-17.5279
TS2-armchair	-2384.857649	-2384.394192	-2384.4994	1.019076	25.37337
FS-armchair	-2384.924079	-2384.457812	-2384.5647	-38.9028	-15.6046

Table S1. The Electronic Energies (Eelec), Enthalpies (H298), Gibbs Free Energies (G298) (All in

a.u.) of all species in the process of Thiophene (TH) oxidation on the edge sites.

species	E _{elec}	H ₂₉₈	G ₂₉₈	ΔH_{298}	ΔG_{298}
B-vacancy	-2138.562525	-2138.048758	-2138.1492		
2O-B-vacancy	-2288.994012	-2288.467753	-2288.5717	-38.5333	-26.15
O ₂ -B-vacancy	-2288.902583	-2288.377384	-2288.4848	18.17407	28.40813
TH-B-vacancy	-2691.652461	-2691.062978	-2691.1852	-10.3505	-3.81808
2O-TH-B-vacancy	-2842.059213	-2841.459685	-2841.5796	-34.8978	-12.2654
TS1-B-vacancy	-2842.0331976	-2841.435822	-2841.552	-19.923	5.060052
IM1-B-vacancy	-2842.0874	-2841.486227	-2841.6083	-51.5531	-30.3131
TS2-B-vacancy	-2841.985871	-2841.389559	-2841.5095	9.107115	31.72258
FS-B-vacancy	-2842.012181	-2841.412647	-2841.5373	-5.38096	14.25195
N-vacancy	-2108.737487	-2108.222227	-2108.3231		
2O-N-vacancy	-2259.46381	-2258.934694	-2259.0396	-222.689	-210.61
TH-N-vacancy	-2661.848426	-2661.257047	-2661.3744	-23.2769	-13.3942
2O-TH-N-vacancy	-2812.558888	-2811.955833	-2812.0758	-237.382	-214.499
TS1-N-vacancy	-2812.510197	-2811.909289	-2812.0211	-208.175	-180.212
IM1-N-vacancy	-2812.513203	-2811.911202	-2812.0233	-209.375	-181.575
TS2-N-vacancy	-2812.233749	-2811.634766	-2811.7524	-35.9085	-11.5517
FS-N-vacancy	-2812.238104	-2811.636984	-2811.7576	-37.3006	-14.8559

Table S2. The Electronic Energies (E_{elec}), Enthalpies (H_{298}), Gibbs Free Energies (G_{298}) (All in

a.u.) of all species in the process of thiophene (TH) oxidation on the B- and N- vacancy sites.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
			 г огозо <i>и</i>		0 121221
1	1	0	5.050304	-5.352263	
2	1	0	2.889125	-0.080025	-0.090350
3	1	0	-0.505043	5.012990	-0.141908
4		0	-4.424970	5.003816	-0.282100
5	5	0	-1.430533	0.295433	0.023559
6 7	5	0	0.782286	-0.872839	0.0/1//5
/	5	0	-1.339763	-2.208412	0.042899
8	/	0	-2.114903	-0.982230	0.036399
9	7	0	0.008025	0.362160	0.044571
10	/	0	0.101856	-2.154490	0.047267
11	5	0	0.725176	1.636310	0.031849
12	5	0	0.872773	-3.383913	0.024474
13	5	0	-3.560846	-1.042475	0.033744
14	5	0	-1.563328	2.797761	-0.041762
15	5	0	2.910739	0.461753	0.207906
16	5	0	2.999445	-2.060124	0.049661
17	5	0	-1.251894	-4.716256	0.028168
18	5	0	-3.459420	-3.549714	0.055260
19	5	0	-3.683588	1.460122	-0.020061
20	5	0	-5.792344	0.105684	-0.000198
21	5	0	-3.820639	3.985094	-0.144424
22	5	0	-5.921291	2.609642	-0.091989
23	7	0	-2.435117	3.904963	-0.015217
24	7	0	-4.481159	2.681547	-0.080943
25	7	0	-6.578222	1.328792	-0.044386
26	7	0	-0.106276	2.861016	-0.081383
27	7	0	-2.231706	1.514071	-0.005463
28	7	0	-4.346058	0.175611	0.009276
29	7	0	-6.455921	-1.186654	0.031540
30	7	0	2.122753	1.629572	0.104049
31	7	0	-4.233464	-2.330891	0.051779
32	5	0	-5.673840	-2.397329	0.056166
33	5	0	5.135542	-0.711848	0.060771
34	7	0	4.313511	0.374230	0.448534
35	7	0	2.224687	-0.836565	0.110228
36	7	0	-2.020983	-3.493081	0.043839
37	7	0	4.450306	-2.017542	0.013483

The optimized geometries of the crucial structure reported in the paper TS1-zig-N % TS1

38	7	0	2.317003	-3.336779	0.008240
39	7	0	0.184255	-4.667537	0.010061
40	5	0	5.230403	-3.243443	-0.063690
41	5	0	3.087983	-4.567001	-0.044137
42	5	0	0.952598	-5.895330	-0.029379
43	7	0	4.520088	-4.491010	-0.080907
44	7	0	2.371341	-5.816914	-0.059651
45	1	0	-8.685871	2.247872	-0.085701
46	1	0	-9.648666	-0.081615	-0.010512
47	1	0	8.552279	-1.814943	-0.012843
48	1	0	7.227007	-4.008414	-0.109163
49	5	0	-8.023478	1.254821	-0.048930
50	5	0	-7.900587	-1.254153	0.029282
51	7	0	-8.638088	-0.032222	-0.008317
52	7	0	6.516468	-0.782437	-0.274537
53	7	0	6.673120	-3.160792	-0.101440
54	5	0	7.362481	-1.898006	-0.109374
55	8	0	0.428022	4.039842	-0.267262
56	8	0	3.025350	3.076550	0.595993
57	1	0	-8.464083	-2.306608	0.057315
58	1	0	-6.220791	-3.457112	0.077747
59	1	0	-4.015399	-4.604662	0.065248
60	1	0	-1.814715	-5.768506	0.026666
61	1	0	0.403866	-6.956837	-0.039074
62	1	0	1.708494	6.038219	0.298220
63	6	0	2.765845	5.848021	0.189407
64	6	0	3.836304	6.618541	0.502490
65	16	0	3.275254	4.313873	-0.524544
66	6	0	5.110009	5.988719	0.204404
67	1	0	3.752132	7.606102	0.943864
68	6	0	4.976152	4.752346	-0.335855
69	1	0	6.067273	6.456025	0.409369
70	1	0	5.738168	4.044466	-0.632264

TS2-zig-N

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	1	0	-5.599497	4.4/4/04	0.412399
2	1	0	-3.586189	6.120805	0.383243
3	1	0	6.774417	-3.185185	0.364412
4	1	0	4.739995	-4.755269	0.293087

5	5	0	1.456611	-0.311836	-0.345491
6	5	0	-0.824678	0.669722	-0.459844
7	5	0	1.130535	2.183001	-0.236595
8	7	0	2.006007	1.029367	-0.255556
9	7	0	0.036976	-0.484370	-0.545633
10	7	0	-0.298208	2.000058	-0.305261
11	5	0	-0.518836	-1.831830	-0.606785
12	5	0	-1.205475	3.116993	-0.134908
13	5	0	3.431125	1.208911	-0.116377
14	5	0	1.713222	-2.818976	-0.128365
15	5	0	-2.762053	-0.823345	-0.539274
16	5	0	-3.164720	1.561829	-0.176240
17	5	0	0.769606	4.655643	-0.016353
18	5	0	3.103077	3.704484	-0.049402
19	5	0	3.744031	-1.286699	-0.029895
20	5	0	5.730657	0.244179	0.094940
21	5	0	4.056886	-3.778539	0.230452
22	5	0	6.053061	-2.241535	0.246808
23	7	0	2.664061	-3.800312	0.250566
24	7	0	4.630540	-2.432192	0.146591
25	7	0	6.608548	-0.909319	0.209560
26	7	0	0.329475	-2.945287	-0.424760
27	7	0	2.316443	-1.468013	-0.202230
28	7	0	4.302178	0.055028	-0.032570
29	7	0	6.283578	1.590971	0.110304
30	7	0	-1.941079	-1.965339	-0.751537
31	7	0	3.981212	2.555923	-0.049624
32	5	0	5.409757	2.736172	0.047204
33	5	0	-5.057108	-0.134176	-0.028388
34	7	0	-4.131078	-1.180383	-0.355876
35	7	0	-2.251041	0.489733	-0.443963
36	7	0	1.671314	3.526213	-0.113703
37	7	0	-4.575075	1.261001	-0.012243
38	7	0	-2.638394	2.898822	-0.066837
39	7	0	-0.662312	4.458823	-0.003659
40	5	0	-5.494336	2.370765	0.204512
41	5	0	-3.551187	4.001447	0.148851
42	5	0	-1.576409	5.570874	0.175238
43	7	0	-4.957321	3.706715	0.257992
44	7	0	-2.980737	5.321359	0.245372
45	1	0	8.777471	-1.648900	0.400677
46	1	0	9.546494	0.751408	0.368167
47	1	0	-8.587825	0.495485	0.266947
48	1	0	-7.572246	2.842402	0.424322

49	5	0	8.037609	-0.715573	0.309659
50	5	0	7.714619	1.775894	0.210627
51	7	0	8.545887	0.618907	0.298523
52	7	0	-6.417489	-0.257090	0.379119
53	7	0	-6.907776	2.083415	0.333403
54	5	0	-7.417234	0.738881	0.308309
55	8	0	-0.518256	-4.218760	0.193121
56	8	0	-2.766629	-5.790839	-0.533021
57	1	0	8.190834	2.871319	0.220572
58	1	0	5.869324	3.836793	0.079921
59	1	0	3.562904	4.803192	0.017101
60	1	0	1.215182	5.759368	0.072098
61	1	0	-1.161435	6.687389	0.271174
62	1	0	-3.237316	-4.537108	2.488552
63	6	0	-3.347738	-4.061882	1.521467
64	6	0	-4.245428	-3.158935	1.133506
65	16	0	-2.225307	-4.575333	0.153641
66	6	0	-4.180485	-2.651799	-0.297482
67	1	0	-5.015715	-2.758787	1.790053
68	6	0	-2.790109	-3.118298	-0.866045
69	1	0	-5.013731	-3.057900	-0.880490
70	1	0	-2.839842	-3.531755	-1.879215