Electronic Supplementary Information (ESI)

for
Controlled intramolecular H-transfer in Malonaldehyde in the electronic ground state mediated through the conical intersection of ${ }^{1} n \pi^{*}$ and ${ }^{1} \pi \pi^{*}$ excited electronic states
K. R. Nandipati ${ }^{a}$, Arun Kumar Kanakati ${ }^{a}$, H. Singh ${ }^{b}$ and S. Mahapatra ${ }^{a *}$
${ }^{a)}$ School of Chemistry, University of Hyderabad, Hyderabad 500 046, India and
${ }^{b)}$ Center for Computational Natural Sciences and Bioinformatics, IIIT Hyderabad, Hyderabad, 500 032, India

[^0]

FIG. S1. The optimized geometry of hydrogen-transfer S_{2} / S_{1} conical intersection (in two different orientations shown in a and b), computed with SA-CAS $(4,4)$ SCF/6-31G(d) method.

FIG. S2. The active space orbitals chosen at the CI geometry from CAS(4,4) SCF calculations. Plots in panels a, b, c and d, respectively, denote $n, \pi, \pi_{1}^{*}, \pi_{2}^{*}$ orbitals.

FIG. S3. The configuration interaction vector (CIV) coefficients of S_{1} and S_{2} electronic states along ξ. The blue and red colour asterisks are for the $n \pi^{*}\left(S_{1}\right)$ and $\pi \pi^{*}\left(S_{2}\right)$ states, respectively.

TABLE S1. Coefficients of configuration interaction wavefunctions at the conical intersection geometry calculated at the $\operatorname{CAS}(4,4)$ SCF level of theory. The first column represents the active space orbitals of $n \pi \pi_{1}^{*} \pi_{2}^{*}$. These orbitals are shown in Fig. S2. The second, third and fourth columns represent the coefficients of configuration interaction wavefunctions associated with the S_{0}, S_{1} and S_{2} states Corresponding to the transition between the active space orbitals. The numbers in bold font reveal strong mixing between the $S_{1}-S_{2}$ states

$n \pi \pi_{1}^{*} \pi_{2}^{*}$	S_{0}	S_{1}	S_{2}
2200	0.9842357	-0.0032572	-0.0006302
2ba0	-0.0022846	$\mathbf{- 0 . 5 1 7 8 2 9 7}$	$\mathbf{- 0 . 4 2 3 6 3 0 9}$
2ab0	0.0022846	$\mathbf{0 . 5 1 7 8 2 9 7}$	$\mathbf{0 . 4 2 3 6 3 0 9}$
b2a0	0.0006726	$\mathbf{- 0 . 4 2 2 5 9 3 1}$	$\mathbf{0 . 5 1 6 5 8 1 7}$
a2b0	-0.0006726	$\mathbf{0 . 4 2 2 5 9 3 1}$	$\mathbf{- 0 . 5 1 6 5 8 1 7}$
20ab	-0.0001213	0.1767158	0.1445192
20ba	0.0001213	-0.1767158	-0.1445192
aabb	0.0032851	0.0997484	-0.1219347
bbaa	0.0032851	0.0997484	-0.1219347
2002	-0.1157341	-0.0016340	0.0040155
abab	-0.0036956	-0.0871044	0.1064116
baba	-0.0036956	-0.0871044	0.1064116
2020	-0.1026442	0.0072943	-0.0091700
b0a2	0.0003179	0.0640672	-0.0782505
a0b2	-0.0003179	-0.0640672	0.0782505
2b0a	0.0600289	0.0052125	-0.0062727
2a0b	-0.0600289	-0.0052125	0.0062727

[^0]: * Corresponding author, E-mail: susanta.mahapatra@uohyd.ac.in

