Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supporting Information

Nan Zhang,^a Chunli Liu,^{b,c,d} Jinghong Ma,^a Ruifeng Li, *^a Haijun Jiao^{*b,e}

(a) College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China. b) State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China; c) National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China; d) University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; e) Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein Strasse 29a, 18059 Rostock, Germany E-mail: rfli@tyut.edu.cn; haijun.jiao@catalysis.de

Contents

Table S1: Computed electronic energies (eV) of all 48 acidic sites for one AI substitution	2
Table S2: Bader charge (BC) for H atom in the bare HZSM5 structures	3
Table S3: Computed electronic energies (eV) of pyridine adsorption at all 48 acidic sites for one AI substitution	4
Table S4: Computed electronic energies (eV) of ammonia adsorption at all 48 acidic sites for one AI substitution	5
Table S5: Computed electronic energies (eV) of the adsorption of NH ₂ CH ₃ , NH(CH ₃) ₂ and N(CH ₃) ₃ at the T1, T3, T5, T7 T11 and T12 centers for one Al substitution	, 6
Table S6: All simulated desorption temperature of pyridine and NH ₃	7
Table S7: Computed electronic energies (eV) of the adsorption of benzene, toluene and p-xylene at the T1, T3, T5, T T11 and T12 centers for one Al substitution	7, 8
Figure S1: The optimized configurations of all 48 acidic sites for one Al substitution in the framework	9
Figure S2: Calculated Bader charge as a function of relative energy of all 48 acid sites and pyridine adsorption enthalpy2	1
Figure S3: The optimized configurations of pyridine adsorption at all 48 acidic sites of one AI substitution in the framework	2
Figure S4: The optimized configurations of ammonia adsorption at all 48 acidic sites of one Al substitution in the framework	4
Figure S5: The optimized configurations of the adsorption of NH ₂ CH ₃ at the acidic sites of the Al substituted T1, T3, T5, T7, T11 and T12 sites in the framework	6
Figure S6: The optimized configurations of the adsorption of NH(CH ₃) ₂ at the acidic sites of the Al substituted T1, T3, T5, T7, T11 and T12 sites in the framework	2
Figure S7: The optimized configurations of the adsorption of N(CH ₃) ₃ at the acidic sites of the Al substituted T1, T3, T5, T7, T11 and T12 sites in the framework	8
Figure S8: The optimized configurations of benzene adsorption at the acidic sites of the Al substituted T1, T3, T5, T7, T11 and T12 sites in the framework	4
Figure S9: The optimized configurations of toluene adsorption at the acidic sites of the Al substituted T1, T3, T5, T7, T11 and T12 sites in the framework	0
Figure S10: The optimized configurations of p-xylene adsorption at the acidic sites of the Al substituted T1, T3, T5, T T11 and T12 sites in the framework	7, 6

	<u> </u>			
T1	$T^{\mathrm{Al}}_1\text{-}O^{H}\text{-}T^{\mathrm{Si}}_2$	T^{Al}_{1} -O ^H - T^{Si}_{10}	$T^{\mathrm{Al}}_1\text{-}O^{H}\text{-}T^{\mathrm{Si}}_5$	$T^{Al}_{1}\text{-}O^{H}\text{-}T^{Si}_{4}$
Ε	-2296.63	-2296.54	-2296.53	-2296.34
T2	T^{Al}_{2} - O^{H} - T^{Si}_{6}	$T^{Al}_2\text{-}O^{H}\text{-}T^{Si}_1$	$T^{Al}_2\text{-}O^{H}\text{-}T^{Si}_8$	$T^{\mathrm{Al}}_2\text{-}O^{H}\text{-}T^{\mathrm{Si}}_3$
Ε	-2296.68	-2296.61	-2296.54	-2296.49
Т3	$T^{Al}_{3}\text{-}O^{H}\text{-}T^{Si}_{4}$	$T^{Al}_{3}\text{-}O^{H}\text{-}T^{Si}_{6}$	$T_3^{\text{Al}}\text{-}O^{\text{H}}\text{-}T_{12}^{\text{Si}}$	$T^{Al}_{3}\text{-}O^{H}\text{-}T^{Si}_{2}$
Ε	-2296.67	-2296.65	-2296.63	-2296.61
T4	$T_4^{\mathrm{Al}} ext{-}O^{H} ext{-}T_7^{\mathrm{Si}}$	$T^{Al}_{4}\text{-}O^{H}\text{-}T^{Si}_{5}$	$T_{4}^{Al}\text{-}O^{H}\text{-}T_{1}^{Si}$	T_4^{Al} - O^{H} - T_3^{Si}
Ε	-2296.68	-2296.64	-2296.57	-2296.51
Т5	$T^{Al}_{5}\text{-}O^{H}\text{-}T^{Si}_{11}$	$T^{Al}_{5}\text{-}O^{H}\text{-}T^{Si}_{6}$	$T^{Al}_{5}\text{-}O^{H}\text{-}T^{Si}_{1}$	T^{Al}_{5} -O ^H - T^{Si}_{4}
Ε	-2296.58	-2296.57	-2296.57	-2296.45
Т6	$T_{6}^{Al}\text{-}O^{H}\text{-}T_{2}^{Si}$	$T^{Al}_{6}\text{-}O^{H}\text{-}T^{Si}_{3}$	$T^{Al}_{6}\text{-}O^{H}\text{-}T^{Si}_{5}$	T_6^{Al} - O^{H} - T_9^{Si}
Ε	-2296.63	-2296.60	-2296.58	-2296.51
Т7	$T_7^{\mathrm{Al}}\text{-}O^{H}\text{-}T_{11}^{\mathrm{Si}}$	$T^{Al}_{7}\text{-}O^{H}\text{-}T^{Si}_{8}$	$T_7^{Al}\text{-}O^{H}\text{-}T_4^{Si}$	T_7^{Al} - O^{H} - T_7^{Si}
Ε	-2296.64	-2296.62	-2296.62	-2296.58
Т8	$T^{Al}_8\text{-}O^{H}\text{-}T^{Si}_{12}$	$T^{Al}_{8}\text{-}O^{H}\text{-}T^{Si}_{7}$	$T^{Al}_{8}\text{-}O^{H}\text{-}T^{Si}_{9}$	$T^{Al}_8\text{-}O^{H}\text{-}T^{Si}_2$
Ε	-2296.73	-2296.59	-2296.50	-2296.46
Т9	$T_{9}^{\text{Al}}\text{-}O^{H}\text{-}T_{10}^{\text{Si}}$	T_9^{Al} - O^{H} - T_9^{Si}	$T_{9}^{\mathrm{Al}}\text{-}O^{H}\text{-}T_{6}^{\mathrm{Si}}$	T_{9}^{Al} - O^{H} - T_{8}^{Si}
Ε	-2296.69	-2296.54	-2296.53	-2296.47
T10	$T^{Al}_{10}\text{-}O^{H}\text{-}T^{Si}_{1}$	$T^{Al}_{10}\text{-}O^{H}\text{-}T^{Si}_{10}$	$T^{Al}_{10}\text{-}O^{H}\text{-}T^{Si}_{11}$	$T^{Al}_{10}\text{-}O^{H}\text{-}T^{Si}_{9}$
Ε	-2296.62	-2296.53	-2296.39	-2296.35
T11	$T^{\mathrm{Al}}_{11}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{5}$	$T^{\mathrm{Al}}_{11}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{7}$	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{12}$	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{10}$
Ε	-2296.62	-2296.59	-2296.58	-2296.46
T12	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{8}$	$T^{\mathrm{Al}}_{12} \text{-} O^{H} \text{-} T^{\mathrm{Si}}_{12}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{3}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{11}$
Е	-2296.70	-2296.63	-2296.62	-2296.58

	Table S1: Computed	l electronic energ	ies (eV	of all 48 acidic sites for one Al substitution
--	--------------------	--------------------	---------	--

Table S2: Bader charge	(BC) for H atom in th	e bare HZSM5	structures
------------------------	-----	--------------------	--------------	------------

T1	$T^{Al}_1\text{-}O^{H}\text{-}T^{Si}_2$	$T^{Al}_{1}\text{-}O^{H}\text{-}T^{Si}_{10}$	$T^{Al}_{1}\text{-}O^{H}\text{-}T^{Si}_{5}$	$T^{Al}_{1}\text{-}O^{H}\text{-}T^{Si}_{4}$
BC/bare HZSM-5	0.67	0.68	0.67	0.65
T2	T_2^{Al} - O^{H} - T_6^{Si}	T^{Al}_2 - O^{H} - T^{Si}_1	T^{Al}_{2} -O ^H - T^{Si}_{8}	T^{Al}_2 - O^{H} - T^{Si}_3
BC/bare HZSM-5	0.64	0.70	0.68	0.72
Т3	T^{Al}_{3} -O ^H - T^{Si}_{4}	T^{Al}_{3} - O^{H} - T^{Si}_{6}	T_3^{Al} - O^{H} - T_{12}^{Si}	T^{Al}_{3} -O ^H - T^{Si}_{2}
BC/bare HZSM-5	0.72	0.71	0.71	0.69
T4	$T^{\mathrm{Al}}_4 ext{-}O^{H} ext{-}T^{\mathrm{Si}}_7$	T_4^{Al} - O^{H} - T_5^{Si}	T_4^{Al} - O^{H} - T_1^{Si}	T_{4}^{Al} - O^{H} - T_{3}^{Si}
BC/bare HZSM-5	0.68	0.67	0.67	0.68
Т5	T^{Al}_{5} -O ^H - T^{Si}_{11}	T^{Al}_{5} - O^{H} - T^{Si}_{6}	T^{Al}_{5} - O^{H} - T^{Si}_{1}	T^{Al}_{5} - O^{H} - T^{Si}_{4}
BC/bare HZSM-5	0.66	0.70	0.68	0.66
Т6	T_{6}^{Al} - O^{H} - T_{2}^{Si}	T_{6}^{Al} - O^{H} - T_{3}^{Si}	T_{6}^{Al} - O^{H} - T_{5}^{Si}	T_{6}^{Al} - O^{H} - T_{9}^{Si}
BC/bare HZSM-5	0.68	0.68	0.71	0.67
Τ7	T^{Al}_{7} -O ^H - T^{Si}_{11}	$T^{Al}_{7}\text{-}O^{H}\text{-}T^{Si}_{8}$	$T_7^{\mathrm{Al}}\text{-}O^{H}\text{-}T_4^{\mathrm{Si}}$	T_7^{Al} - O^{H} - T_7^{Si}
BC/bare HZSM-5	0.67	0.67	0.67	0.67
Т8	T^{Al}_{8} -O ^H - T^{Si}_{12}	T^{Al}_{8} -O ^H - T^{Si}_{7}	T^{Al}_{8} -O ^H - T^{Si}_{9}	T^{Al}_{8} -O ^H - T^{Si}_{2}
BC/bare HZSM-5	0.69	0.70	0.68	0.67
Т9	T_{9}^{Al} - O^{H} - T_{10}^{Si}	T_9^{Al} - O^{H} - T_9^{Si}	$T_9^{\mathrm{Al}}\text{-}O^{H}\text{-}T_6^{\mathrm{Si}}$	$T_9^{\mathrm{Al}}\text{-}O^{H}\text{-}T_8^{\mathrm{Si}}$
BC/bare HZSM-5	0.70	0.69	0.67	0.69
T10	$T^{Al}_{10}\text{-}O^{H}\text{-}T^{Si}_{1}$	$T^{Al}_{10}\text{-}O^{H}\text{-}T^{Si}_{10}$	$T^{\mathrm{Al}}_{10}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{11}$	$T^{\mathrm{Al}}_{10}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{9}$
BC/bare HZSM-5	0.70	0.70	0.66	0.68
T11	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{5}$	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{7}$	$T^{\mathrm{Al}}_{11}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{12}$	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{10}$
BC/bare HZSM-5	0.66	0.64	0.67	0.65
T12	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{8}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{12}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{3}$	$T^{\mathrm{Al}}_{12}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{11}$
BC/bare HZSM-5	0.68	0.71	0.68	0.68

•	0 () (, ,		
T1	$T^{\mathrm{Al}}_1\text{-}O^{H}\text{-}T^{\mathrm{Si}}_2$	T^{Al}_{1} - O^{H} - T^{Si}_{10}	T^{Al}_{1} - O^{H} - T^{Si}_{5}	$T^{\mathrm{Al}}_1\text{-}O^{H}\text{-}T^{\mathrm{Si}}_4$
E/Pyridine	-2370.13	-2370.00	-2370.04	-2368.43
T2	T_2^{Al} - O^{H} - T_6^{Si}	T_2^{Al} - O^{H} - T_1^{Si}	T^{Al}_2 -O ^H - T^{Si}_8	$T_2^{Al}\text{-}O^{H}\text{-}T_3^{Si}$
E/Pyridine	-2369.82	-2370.03	-2369.42	-2369.96
ТЗ	T^{Al}_{3} -O ^H - T^{Si}_{4}	T_3^{Al} - O^{H} - T_6^{Si}	T^{Al}_{3} - O^{H} - T^{Si}_{12}	T^{Al}_3 -O ^H - T^{Si}_2
E/Pyridine	-2369.88	-2370.02	-2370.07	-2370.05
Т4	T_4^{Al} - O^{H} - T_7^{Si}	T_4^{Al} - O^{H} - T_5^{Si}	T_4^{Al} - O^{H} - T_1^{Si}	T_4^{Al} - O^{H} - T_3^{Si}
E/Pyridine	-2369.68	-2369.87	-2368.47	-2369.90
Т5	$T^{\mathrm{Al}}_{5} ext{-}O^{H} ext{-}T^{\mathrm{Si}}_{11}$	T^{Al}_{5} -O ^H - T^{Si}_{6}	T^{Al}_{5} -O ^H - T^{Si}_{1}	T_5^{Al} -O ^H - T_4^{Si}
E/Pyridine	-2368.37	-2370.03	-2369.68	-2369.67
Т6	T_{6}^{Al} -O ^H - T_{2}^{Si}	T_{6}^{Al} -O ^H - T_{3}^{Si}	T_{6}^{Al} -O ^H - T_{5}^{Si}	T_{6}^{Al} -O ^H - T_{9}^{Si}
E/Pyridine	-2369.56	-2369.17	-2369.86	-2369.84
Τ7	T_7^{Al} - O^{H} - T_{11}^{Si}	T_7^{Al} - O^{H} - T_8^{Si}	T_7^{Al} - O^{H} - T_4^{Si}	T_7^{Al} - O^{H} - T_7^{Si}
E/Pyridine	-2370.13	-2370.07	-2370.11	-2370.09
Т8	$T^{\mathrm{Al}}_{8} ext{-}O^{H} ext{-}T^{\mathrm{Si}}_{12}$	$T^{\mathrm{Al}}_{8} ext{-}O^{H} ext{-}T^{\mathrm{Si}}_{7}$	$T^{\mathrm{Al}}_{8} ext{-}O^{H} ext{-}T^{\mathrm{Si}}_{9}$	T^{Al}_{8} -O ^H - T^{Si}_{2}
E/Pyridine	-2368.49	-2370.00	-2369.97	-2369.48
Т9	$T^{\mathrm{Al}}_{9} ext{-}O^{H} ext{-}T^{\mathrm{Si}}_{10}$	T_{9}^{Al} - O^{H} - T_{9}^{Si}	T_{9}^{Al} -O ^H - T_{6}^{Si}	$T_{9}^{Al}\text{-}O^{H}\text{-}T_{8}^{Si}$
E/Pyridine	-2369.62	-2369.80	-2369.83	-2369.98
T10	$T^{Al}_{10}\text{-}O^{H}\text{-}T^{Si}_{1}$	$T^{Al}_{10}\text{-}O^{H}\text{-}T^{Si}_{10}$	$T^{Al}_{10}\text{-}O^{H}\text{-}T^{Si}_{11}$	$T^{Al}_{10}\text{-}O^{H}\text{-}T^{Si}_{9}$
E/Pyridine	-2370.06	-2370.02	-2368.65	-2369.81
T11	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{5}$	$T^{\mathrm{Al}}_{11}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{7}$	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{12}$	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{10}$
E/Pyridine	-2369.35	-2370.02	-2370.09	-2369.85
T12	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{8}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{12}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{3}$	$T^{\mathrm{Al}}_{12}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{11}$
E/Pyridine	-2369.69	-2369.95	-2370.06	-2369.99

Table S3: Computed electronic energies (eV) of pyridine adsorption at all 48 acidic sites for one AI substitution

Table S4: Computed electronic e	energies (eV)	of ammonia	adsorption	n at all 4	8 acidic site	es for one	Al substitution
---------------------------------	------------	-----	------------	------------	------------	---------------	------------	-----------------

T1	$T_{1}^{Al}-O^{H}-T_{2}^{Si}$	$T_{1}^{Al}-O^{H}-T_{10}^{Si}$	$T_{1}^{Al}-O^{H}-T_{5}^{Si}$	$T_{1}^{Al}-O^{H}-T_{4}^{Si}$
τ2	$T_{2}^{Al}-O^{H}-T_{6}^{Si}$	$T_{2}^{Al}-O^{H}-T_{1}^{Si}$	$T_{2}^{Al}-O^{H}-T_{8}^{Si}$	$T_{2}^{Al}-O^{H}-T_{3}^{Si}$
е/мп ₃	$T_{3}^{Al}-O^{H}-T_{4}^{Si}$	$^{-2317.03}$	$^{-2317.45}$	$^{-2317.03}$
ТЗ		$T_{3}^{Al}-O^{H}-T_{6}^{Si}$	$T_{3}^{Al}-O^{H}-T_{12}^{Si}$	$T_{3}^{Al}-O^{H}-T_{2}^{Si}$
T4 <i>F/NH</i> 2	$T_{4}^{Al}-O^{H}-T_{7}^{Si}$	T_{4}^{Al} -O ^H -T_{5}^{Si}-2317.82	$T_{4}^{Al}-O^{H}-T_{1}^{Si}$ -2316.60	T_{4}^{Al} -O ^H - T_{3}^{Si} -2317.74
5 15 <i>Ε/ΝΗ</i> ₂	T ^{Al} ₅ -O ^H -T ^{Si} ₁₁ -2317.61	T ^{Al} ₅ -O ^H -T ^{Si} ₆ -2317.67	T ^{Al} ₅ -O ^H -T ^{Si} ₁ -2317.67	T ^{Al} ₅ -O ^H -T ^{Si} ₄ -2317.61
Τ6	T ^{AI} ₆ -O ^H -T ^{Si} ₂	T ^{Al} ₆ -O ^H -T ^{Si} ₃	T ^{Al} ₆ -O ^H -T ^{Si} ₅	T ^{Al} ₆ -O ^H -T ^{Si} ₉
<i>Ε/ΝΗ</i> ₃	-2317.59	-2317.55	-2317.64	-2317.56
T7	T ^{Al} ₇ -O ^H -T ^{Si} ₁₁	T ^{Al} ₇ -O ^H -T ^{Si}	T ^{Al} ₇ -O ^H -T ^{Si}	T ^{Al} ₇ -O ^H -T ^{Si}
E/NH ₃	-2317.72	-2317.72	-2317.72	-2317.72
T8	T ^{Al} ₈ -O ^H -T ^{Si} ₁₂	T ^{Al} ₈ -O ^H -T ^{Si} ₇	T ^{Al} ₈ -O ^H -T ^{Si} ₉	T_8^{Al} -0 ^H - T_2^{Si}
<i>E/NH</i> ₃	-2316.81	-2317.63	-2317.58	-2317.50
T9	T ^{Al} ₉ -O ^H -T ^{Si} ₁₀	T ^{Al} ₉ -O ^H -T ^{Si} ₉	T ^{Al} ₉ -O ^H -T ^{Si} ₆	T ^{Al} ₉ -O ^H -T ^{Si}
<i>E/NH</i> 3	-2316.20	-2317.64	-2317.59	-2317.64
T10	T ^{Al} ₁₀ -O ^H -T ^{Si}	T_{10}^{Al} -O ^H - T_{10}^{Si}	T_{10}^{Al} -O ^H - T_{11}^{Si}	T ^{Al} ₁₀ -O ^H -T ^{Si} ₉
<i>E/NH</i> ₃	-2317.65	-2317.68	-2317.68	-2317.47
T11	T ^{Al} ₁₁ -O ^H -T ^{Si} ₅	T ^{Al} ₁₁ -O ^H -T ^{Si} ₇	T ^{Al} ₁₁ -O ^H -T ^{Si} ₁₂	T ^{Al} ₁₁ -O ^H -T ^{Si} ₁₀
E/NH₃	-2317.65	-2317.64	-2317.71	-2317.54
-,, T12 E/NH₂	T ^{Al} ₁₂ -O ^H -T ^{Si} ₈ -2316.57	T ^{Al} ₁₂ -O ^H -T ^{Si} ₁₂ -2317.64	T ^{Al} ₁₂ -O ^H -T ^{Si} ₃ -2317.62	T ^{Al} ₁₂ -O ^H -T ^{Si} ₁₁ -2317.62

T1	T^{Al}_{1} - O^{H} - T^{Si}_{2}	T^{Al}_{1} - O^{H} - T^{Si}_{10}	T^{Al}_{1} -O ^H - T^{Si}_{5}	T^{Al}_{1} -O ^H - T^{Si}_{4}
E/NH ₂ CH ₃	-2334.23	-2334.16	-2334.23	-2332.68
E/NH(CH ₃) ₂	-2350.82	-2350.79	-2350.82	-2348.95
<i>E/</i> N(CH ₃) ₃	-2367.28	-2367.21	-2367.10	-2365.55
Т3	$T^{\mathrm{Al}}_{3}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{4}$	$T^{Al}_{3}\text{-}O^{H}\text{-}T^{Si}_{6}$	$T_3^{Al}\text{-}O^{H}\text{-}T_{12}^{Si}$	$T^{Al}_{3}\text{-}O^{H}\text{-}T^{Si}_{2}$
E/NH ₂ CH ₃	-2334.24	-2334.16	-2334.16	-2334.16
E/NH(CH ₃) ₂	-2350.79	-2350.79	-2350.76	-2350.82
<i>E/</i> N(CH ₃) ₃	-2367.21	-2367.21	-2366.91	-2367.18
Т5	$T^{Al}_{5}\text{-}O^{H}\text{-}T^{Si}_{11}$	$T^{\mathrm{Al}}_{5}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{6}$	$T_5^{\mathrm{Al}}\text{-}O^{H}\text{-}T_1^{\mathrm{Si}}$	$T^{Al}_{5}\text{-}O^{H}\text{-}T^{Si}_{4}$
E/NH ₂ CH ₃	-2334.15	-2334.21	-2334.16	-2334.18
E/NH(CH ₃) ₂	-2350.76	-2350.82	-2350.78	-2350.80
<i>E/</i> N(CH ₃) ₃	-2366.86	-2367.08	-2367.25	-2367.22
Τ7	$T_7^{\text{Al}}\text{-}O^{\text{H}}\text{-}T_{11}^{\text{Si}}$	T_7^{Al} - O^{H} - T_8^{Si}	$T_7^{\mathrm{Al}}\text{-}O^{H}\text{-}T_4^{\mathrm{Si}}$	T_7^{Al} - O^{H} - T_7^{Si}
<i>E/</i> NH ₂ CH ₃	-2334.17	-2334.25	-2334.36	-2334.27
E/NH(CH ₃) ₂	-2350.84	-2350.78	-2350.94	-2350.89
<i>E</i> /N(CH ₃) ₃	-2367.22	-2367.22	-2367.29	-2367.11
T11	$T^{\mathrm{Al}}_{11}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{5}$	$T^{\mathrm{Al}}_{11}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{7}$	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{12}$	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{10}$
E/NH ₂ CH ₃	-2334.04	-2334.06	-2334.23	-2334.05
E/NH(CH ₃) ₂	-2350.78	-2350.83	-2350.85	-2350.20
<i>E/</i> N(CH ₃) ₃	-2366.98	-2367.23	-2367.20	-2365.49
T12	$T^{\mathrm{Al}}_{12}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{8}$	$T^{\mathrm{Al}}_{12} \text{-} O^{H} \text{-} T^{\mathrm{Si}}_{12}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{3}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{11}$
E/NH ₂ CH ₃	-2332.06	-2334.17	-2334.04	-2334.13
E/NH(CH ₃) ₂	-2348.75	-2350.73	-2350.75	-2350.71
$E/N(CH_3)_3$	-2365.63	-2367.27	-2367.24	-2367.18

Table S5: Computed electronic energies (eV) of the adsorption of NH_2CH_3 , $NH(CH_3)_2$ and $N(CH_3)_3$ at the T1, T3, T5, T7, T11 and T12 centers for one AI substitution

T1		A=E11/K	A=E12/K	A=E13/K	A=E14/K
$\Delta H_{ads}/NH_3$	-128.2/-1.33	482	452	425	401
ΔH_{ads} /Pyridine	-204.7/-2.12	760	712	670	631
T2					
$\Delta H_{ads}/NH_3$	-125.6/-1.30	473	442	416	392
ΔH_{ads} /Pyridine	-191.0/-1.98	711	666	626	591
Т3					
$\Delta H_{ads}/NH_3$	-128.3/-1.33	484	451	424	400
ΔH_{ads} /Pyridine	-204.5/-2.12	758	712	670	631
T4					
$\Delta H_{ads}/NH_3$	-141.6/-1.47	531	498	468	441
ΔH_{ads} /Pyridine	-175.7/-1.83	654	614	577	545
T5					
$\Delta H_{ads}/NH_3$	-139.0/-1.44	521	488	458	433
ΔH_{ads} /Pyridine	-200.6/-2.08	744	699	656	620
Т6					
$\Delta H_{ads}/NH_3$	-128.6/-1.33	483	453	426	402
ΔH_{ads} /Pyridine	-180.0/-1.87	671	629	592	558
Τ7					
$\Delta H_{ads}/NH_3$	-140.7/-1.46	528	495	464	438
ΔH_{ads} /Pyridine	-203.4/-2.12	756	707	665	629
Т8					
$\Delta H_{ads}/NH_3$	-120.5/-1.25	454	426	400	376
ΔH_{ads} /Pyridine	-182.1/-1.89	678	637	598	563
Т9					
$\Delta H_{ads}/NH_3$	-122.5/-1.27	462	432	407	382
ΔH_{ads} /Pyridine	-182.0/-1.89	678	634	597	564
T10					
$\Delta H_{ads}/NH_3$	-133.9/-1.39	502	472	442	418
ΔH_{ads} /Pyridine	-178.0/-1.84	663	621	584	552
T11					
$\Delta H_{ads}/NH_3$	-136.1/-1.41	511	479	450	424
ΔH_{ads} /Pyridine	-201.3/-2.09	747	700	659	623
T12					
$\Delta H_{\rm ads}/\rm NH_3$	-126.1/-1.31	475	444	417	394
ΔH_{ads} /Pyridine	-189.2/-1.96	706	662	621	586

Table S6: All simulated desorption temperature of pyridine and $\ensuremath{\mathsf{NH}}_3$

T1	$T_1^{\text{Al}}\text{-}O^{\text{H}}\text{-}T_2^{\text{Si}}$	$T_1^{Al}\text{-}O^{H}\text{-}T_{10}^{Si}$	$T^{Al}_{1}\text{-}O^{H}\text{-}T^{Si}_{5}$	$T^{Al}_{1}\text{-}O^{H}\text{-}T^{Si}_{4}$
<i>E/</i> benzene	-2373.73	-2373.45	-2373.57	-2372.94
<i>E/</i> toluene	-2390.43	-2390.38	-2390.35	-2390.07
<i>E</i> /p-xylene	-2407.26	-2406.98	-2407.17	-2406.66
ТЗ	$T_3^{Al}\text{-}O^{H}\text{-}T_4^{Si}$	$T_3^{Al}\text{-}O^{H}\text{-}T_6^{Si}$	$T_3^{Al}\text{-}O^{H}\text{-}T_{12}^{Si}$	$T_3^{Al}\text{-}O^{H}\text{-}T_2^{Si}$
<i>E/</i> benzene	-2373.43	-2373.43	-2373.70	-2373.55
<i>E/</i> toluene	-2390.30	-2390.32	-2390.51	-2390.51
E/p-xylene	-2406.87	-2406.40	-2407.17	-2407.19
Т5	$T_5^{Al}\text{-}O^{H}\text{-}T_{11}^{Si}$	$T^{Al}_{5}\text{-}O^{H}\text{-}T^{Si}_{6}$	$T^{Al}_{5}\text{-}O^{H}\text{-}T^{Si}_{1}$	$T^{Al}_{5}\text{-}O^{H}\text{-}T^{Si}_{4}$
<i>E/</i> benzene	-2373.27	-2373.54	-2373.55	-2373.38
<i>E/</i> toluene	-2389.98	-2390.15	-2390.31	-2389.83
<i>E</i> /p-xylene	-2406.62	-2406.96	-2407.21	-2406.87
77	$T_{7}^{\text{Al}}\text{-}O^{\text{H}}\text{-}T_{11}^{\text{Si}}$	$T_7^{\text{Al}}\text{-}O^{\text{H}}\text{-}T_8^{\text{Si}}$	$T_7^{\mathrm{Al}}\text{-}O^{\mathrm{H}}\text{-}T_4^{\mathrm{Si}}$	$T_7^{\mathrm{Al}}\text{-}O^{\mathrm{H}}\text{-}T_7^{\mathrm{Si}}$
<i>E/</i> benzene	-2373.43	-2373.71	-2373.62	-2373.17
<i>E/</i> toluene	-2390.40	-2390.55	-2390.36	-2390.03
<i>E</i> /p-xylene	-2407.23	-2407.16	-2407.18	-2406.67
T11	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{5}$	$T^{\mathrm{Al}}_{11}\text{-}O^{H}\text{-}T^{\mathrm{Si}}_{7}$	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{12}$	$T^{Al}_{11}\text{-}O^{H}\text{-}T^{Si}_{10}$
<i>E/</i> benzene	-2373.22	-2373.47	-2373.62	-2373.19
<i>E/</i> toluene	-2389.71	-2390.33	-2390.40	-2389.99
<i>E</i> /p-xylene	-2406.78	-2407.07	-2406.92	-2406.77
T12	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{8}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{12}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{3}$	$T^{Al}_{12}\text{-}O^{H}\text{-}T^{Si}_{11}$
<i>E/</i> benzene	-2372.56	-2373.63	-2373.68	-2373.52
<i>E/t</i> oluene	-2390.20	-2390.55	-2390.44	-2390.32
E/p-xylene	-2406.78	-2406.89	-2407.16	-2406.94

Table S7: Computed electronic energies (eV) of the adsorption of benzene, toluene and p-xylene at the T1, T3, T5, T7, T11 and T12 centers for one Al substitution

 $\mathsf{T}^{Al}_{1}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{10}$

 $\mathsf{T}^{Al}_{1}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{5}$

 $\mathsf{T}_1^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_4^{Si}$

 $\mathsf{T}_4^{Al}\text{-}\mathsf{O}^{H}\text{-}\mathsf{T}_7^{Si}$

 $\mathsf{T}^{Al}_{5}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{11}$

 $T_7^{Al} - O^H - T_4^{Si}$

 $\mathsf{T}_7^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_7^{\text{Si}}$

 $\mathsf{T}^{Al}_{7}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{8}$

 $\mathsf{T}^{Al}_{7}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{11}$

 $\mathsf{T}^{Al}_8\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_2$

 $\mathsf{T}^{Al}_8\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_7$

b ↓→ a

 $\mathsf{T}^{Al}_8\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{12}$

 $\mathsf{T}^{Al}_{9}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{8}$

a

b c→a

b ↓→ a

 $\mathsf{T}_9^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_9^{\text{Si}}$

 $\mathsf{T}_9^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_{10}^{\text{Si}}$

 $\mathsf{T}^{Al}_{10}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{1}$

 $\mathsf{T}^{Al}_{10}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{9}$

 ${\sf T}_{10}^{Al} {\text{--}} {\sf O}^{\sf H} {\text{--}} {\sf T}_{10}^{Si}$

a

 $\mathsf{T}^{Al}_{10}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{11}$

¢ b

 $\mathsf{T}^{Al}_{11}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{5}$

b ↓→ a

b ↓→a

 $\mathsf{T}^{Al}_{12}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{8}$

 ${\sf T}_{12}^{\rm Al} {\rm -} {\sf O}^{\rm H} {\rm -} {\sf T}_{11}^{\rm Si}$

Figure S1 The optimized configurations of all 48 acidic sites for one Al substitution in the framework

Figure S2 Calculated Bader charge as a function of (a) relative energy ΔE of all 48 acid sites and (b) pyridine adsorption enthalpy ΔH_{ads}

 $\mathsf{T}^{Al}_{1}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{10}$

 $\mathsf{T}^{Al}_{2}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{8}$

 $\mathsf{T}^{Al}_{2}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{6}$

T^{Al} T^{Al} D

 $\mathsf{T}^{Al}_{3}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{2}$

Transformed a second seco

 $\mathsf{T}^{Al}_{3}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{6}$

 $\mathsf{T}_3^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_{12}^{Si}$

 $\mathsf{T}_4^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_3^{Si}$

 $\mathsf{T}_4^{Al}\text{-}\mathsf{O}^{H}\text{-}\mathsf{T}_5^{Si}$

 $\mathsf{T}_4^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_7^{Si}$

b ↓→a

b ↓→a

 $\mathsf{T}_5^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_6^{Si}$

 $\mathsf{T}^{Al}_{5}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{4}$

c a b

b \leftarrow^{c} a

b ↓→a

b L

c a b

 $\mathsf{T}^{Al}_8\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{12}$

b c → a

 $\mathsf{T}^{Al}_8\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_3$

 $\mathsf{T}_9^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_9^{\text{Si}}$

 $\mathsf{T}_9^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_{10}^{\text{Si}}$

¢ c

 $\mathsf{T}^{Al}_{10}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{10}$

 $\mathsf{T}^{Al}_{10}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{11}$

 $\mathsf{T}^{Al}_{11}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{12}$

≙

c a b

c a b

c a b

¢ c

b c → a

 $\mathsf{T}^{Al}_{12} \text{-} \mathsf{O}^{\mathsf{H}} \text{-} \mathsf{T}^{Si}_{12}$

Figure S3 The optimized configurations of pyridine adsorption at all 48 acidic sites of one AI substitution in the framework

b

b ↓→a ¢ c

• c b

¢ c

T^{Al}₃-O^H-T^{Si}₄

 $\mathsf{T}_4^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_5^{Si}$

 $\mathsf{T}^{\mathrm{Al}}_{6}$ -O^H- $\mathsf{T}^{\mathrm{Si}}_{5}$

 $\mathsf{T}_6^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_3^{Si}$

 $\mathsf{T}^{Al}_{6} \text{-} \mathsf{O}^{\mathsf{H}} \text{-} \mathsf{T}^{Si}_{2}$

 $\mathsf{T}^{\mathrm{Al}}_{7}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{\mathrm{Si}}_{11}$

 $\mathsf{T}_7^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_7^{\text{Si}}$

 $\mathsf{T}_7^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_4^{Si}$

T^{Al} ⁷⁸ ⁷⁵ ⁷⁵ ⁷⁵ ⁶

 $\mathsf{T}_9^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_6^{\text{Si}}$

 $\mathsf{T}^{\mathrm{Al}}_{11} \text{-} \mathsf{O}^{\mathsf{H}} \text{-} \mathsf{T}^{\mathrm{Si}}_{12}$

Figure S4 The optimized configurations of ammonia adsorption at all 48 acidic sites of one Al substitution in the framework

 $T_{1}^{Al} - 0^{H} - T_{10}^{Si}$

 $\mathsf{T}_1^{Al}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!H}\!\!-\!\!\mathsf{T}_2^{Si}$

 $\begin{array}{c} & & \\$

 $\mathsf{T}_1^{Al}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!H}\!\!-\!\!\mathsf{T}_5^{Si}$

 $\mathsf{T}^{Al}_{\mathbf{3}}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle H}\!\!-\!\!\mathsf{T}^{Si}_{\mathbf{2}}$

 $\mathsf{T}^{Al}_{\mathbf{3}}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle H}\!\!-\!\!\mathsf{T}^{Si}_{\mathbf{4}}$

 $\mathsf{T}^{Al}_{3}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle H}\!\!-\!\!\mathsf{T}^{Si}_{6}$

 $\int_{c}^{a} b$

 \downarrow^{b}_{c} a

e a b

 ${\rm T}_{5}^{Al}\!\!-\!\!0^{\rm H}\!\!-\!\!{\rm T}_{4}^{Si}$

↓ c b

 $\mathtt{T}_5^{Al}\!\!-\!\!0^{\scriptscriptstyle H}\!\!-\!\!\mathtt{T}_1^{Si}$

 $T_{7}^{Al} = 0^{H} = T_{11}^{Si}$

 $\mathsf{T}_7^{Al}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle H}\!\!-\!\!\mathsf{T}_7^{Si}$

↓ c b

 ${\rm T}_{\bf 11}^{\bf Al}\!\!-\!\!{\rm O}^{\rm H}\!\!-\!\!{\rm T}_{\bf 10}^{\bf Si}$

 $T_{11}^{Al} = 0^{H} = T_{12}^{Si}$

 $T_{11}^{Al} = 0^{H} = T_{7}^{Si}$

 ${\rm T}_{11}^{Al}\!\!-\!\!0^{\rm H}\!\!-\!\!{\rm T}_{5}^{Si}$

Figure S5 The optimized configurations of the adsorption of NH_2CH_3 at the acidic sites of the Al substituted T1, T3, T5, T7, T11 and T12 sites in the framework

 $\mathsf{T}^{\mathbf{Al}}_{\mathbf{1}}\!\!-\!\!\mathsf{O}^{\!\scriptscriptstyle H}\!\!-\!\!\mathsf{T}^{\mathbf{Si}}_{\mathbf{10}}$

 $\mathsf{T}_1^{Al}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!H}\!\!-\!\!\mathsf{T}_2^{Si}$

 $\stackrel{b}{\underset{c}{\longrightarrow}}$ a

b K a

 $\mathsf{T}^{Al}_{1}\!\!-\!\!\mathsf{O}^{\text{H}}\!\!-\!\!\mathsf{T}^{Si}_{5}$

 $\begin{array}{c} b \\ f \\ c \\ c \end{array} a$

 $\mathsf{T}^{Al}_{\mathbf{3}}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!H}\!\!-\!\!\mathsf{T}^{Si}_{\mathbf{12}}$

↓ c b

 $\mathsf{T}_7^{\mathbf{Al}}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle H}\!\!-\!\!\mathsf{T}_4^{\mathbf{Si}}$

 $T_{7}^{Al} - 0^{H} - T_{7}^{Si}$

 $T_{7}^{Al} = 0^{H} = T_{11}^{Si}$

 ${\rm T}_{11}^{Al}\!\!-\!\!0^{\rm H}\!\!-\!\!{\rm T}_{5}^{Si}$

 $T_{11}^{Al} = 0^{H} = T_{10}^{Si}$

 $T_{11}^{Al} = 0^{H} = T_{12}^{Si}$

 $\downarrow^{b}_{c} \stackrel{a}{\longrightarrow} a$

 $T_{12}^{Al} - 0^{H} - T_{8}^{Si}$

 $\begin{array}{c} b \\ c \\ c \end{array} a$

Figure S6 The optimized configurations of the adsorption of $NH(CH_3)_2$ at the acidic sites of the Al substituted T1, T3, T5, T7, T11 and T12 sites in the framework

 $\mathsf{T}^{Al}_{1}\!\!-\!\!\mathsf{O}^{\text{H}}\!\!-\!\!\mathsf{T}^{Si}_{5}$

,⊭rrrrrrrrra a

 $\mathtt{T_1^{Al}}\mathtt{-}\mathtt{O}^{\mathtt{H}}\mathtt{-}\mathtt{T_4^{Si}}$

 $\mathsf{T}^{Al}_{3}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!H}\!\!-\!\!\mathsf{T}^{Si}_{4}$

 $\mathsf{T}^{Al}_{3}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle H}\!\!-\!\!\mathsf{T}^{Si}_{6}$

 $\mathsf{T}^{Al}_{3}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!H}\!\!-\!\!\mathsf{T}^{Si}_{12}$

 $\downarrow^{b}_{c} \stackrel{a}{\longrightarrow} a$

 $T_{5}^{Al} - 0^{H} - T_{1}^{Si}$

 $\mathsf{T}_5^{Al}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!H}\!\!-\!\!\mathsf{T}_4^{Si}$

 $\stackrel{b}{\underset{c}{\longrightarrow}}^{a}$

 $\mathsf{T}^{Al}_{5}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!H}\!\!-\!\!\mathsf{T}^{Si}_{11}$

 $\mathsf{T}^{\mathbf{Al}}_{\mathbf{7}}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!\mathsf{H}}\!\!-\!\!\mathsf{T}^{\mathbf{Si}}_{\mathbf{7}}$

 $T_7^{Al} - 0^H - T_8^{Si}$

 $\mathsf{T}^{Al}_{7}\!\!-\!\!0^{\scriptscriptstyle H}\!\!-\!\!\mathsf{T}^{Si}_{11}$

 $\overset{b}{\underset{c}{\overset{b}{\longrightarrow}}}^{a}$

 $\mathsf{T}_7^{Al}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!H}\!\!-\!\!\mathsf{T}_4^{Si}$

 $T_{11}^{Al} = 0^{H} = T_{10}^{Si}$

 $\mathsf{T}_{\mathtt{1}\mathtt{1}}^{\mathtt{Al}}\!\!-\!\!\mathsf{O}^{\mathtt{H}}\!\!-\!\!\mathsf{T}_{\mathtt{7}}^{\mathtt{Si}}$

 $\mathsf{T}^{\mathbf{Al}}_{\mathbf{11}}\!\!-\!\!\mathsf{O}^{\scriptscriptstyle\!\mathsf{H}}\!\!-\!\!\mathsf{T}^{\mathbf{Si}}_{\mathbf{12}}$

Figure S7 The optimized configurations of the adsorption of $N(CH_3)_3$ at the acidic sites of the Al substituted T1, T3, T5, T7, T11 and T12 sites in the framework

 $\mathsf{T}^{Al}_{1}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{10}$

 $\mathsf{T}^{Al}_{1}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{2}$

 $\mathsf{T}_1^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_4^{\text{Si}}$

 $\mathsf{T}^{Al}_{1}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{5}$

 $\mathsf{T}_3^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_4^{Si}$

 $\mathsf{T}^{Al}_{3}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{2}$

 $\mathsf{T}_5^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_1^{Si}$

 $\mathsf{T}_5^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_4^{Si}$

 $\mathsf{T}_5^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_6^{\text{Si}}$

 $\mathsf{T}^{Al}_{5}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{11}$

 Γ_7^{Al}

c a b

¢ c

 $\mathsf{T}_7^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_4^{\text{Si}}$

 $\mathsf{T}^{Al}_{11}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{12}$

 $\mathsf{T}^{Al}_{11}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{10}$

 $\mathsf{T}^{Al}_{11}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{7}$

 $\mathsf{T}^{Al}_{11}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{5}$

 $\mathsf{T}^{Al}_{12}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{8}$

 $\mathsf{T}^{Al}_{12}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{11}$

 $a \rightarrow a$

Figure S8 The optimized configurations of benzene adsorption at the acidic sites of the AI substituted T1, T3, T5, T7, T11 and T12 sites in the framework

a c c

 $\mathsf{T}^{Al}_1\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_2$

 $\mathsf{T}_1^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_4^{Si}$

 $\mathsf{T}^{Al}_{1}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{10}$

 $\mathsf{T}^{Al}_{1}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{5}$

b ↓↓→a

 $\mathsf{T}_3^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_4^{Si}$

 $\mathsf{T}^{Al}_{3}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{12}$

c a b

¢ c

¢ c

K_TAl S³ K_TAl S³

 $\mathsf{T}_5^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_{11}^{\text{Si}}$

 $F_{T_{7}^{\text{Si}}}$

 $\mathsf{T}_7^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_7^{\text{Si}}$

 $\mathsf{T}^{Al}_{7}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{8}$

¢ c

T₇ T₁₁

c a b

c a b

c a b

 $\mathsf{T}^{\mathrm{Al}}_{11} \text{-} \mathsf{O}^{\mathsf{H}} \text{-} \mathsf{T}^{\mathrm{Si}}_{7}$

 $\mathsf{T}^{Al}_{12}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{3}$

 $\mathsf{T}^{Al}_{12}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{8}$

 T_{12}^{Al}

b a√c

b a√c

T^A₁₂ T^A₁₂

 T_{12}^{Al} -0^H- T_{12}^{Si}

Figure S9 The optimized configurations of toluene adsorption at the acidic sites of the Al substituted T1, T3, T5, T7, T11 and T12 sites in the framework

 $\mathsf{T}^{\mathrm{Al}}_1 \text{-} \mathsf{O}^{\mathsf{H}} \cdot \mathsf{T}^{\mathrm{Si}}_{10}$

 $\mathsf{T}^{Al}_1\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_2$

 $\mathsf{T}^{Al}_{1}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{4}$

 $\mathsf{T}^{Al}_1\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_5$

 $\mathsf{T}^{Al}_{3}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{12}$

 $\mathsf{T}_3^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_6^{\text{Si}}$

¢ c

¢^ab

¢^ab

 $\mathsf{T}_3^{Al}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}_4^{Si}$

 $\mathsf{T}_5^{\text{Al}}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}_4^{\text{Si}}$

 $\mathsf{T}_5^{\mathrm{Al}}$ - O^{H} - $\mathsf{T}_6^{\mathrm{Si}}$

¢ c

¢ c

 $\mathsf{T}^{Al}_{5}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{11}$

 $\int_{c}^{a} b$

¢ c

¢^ab

¢^ab

 $\mathsf{T}_7^{\mathrm{Al}}$ - O^{H} - $\mathsf{T}_7^{\mathrm{Si}}$

 $\mathsf{T}^{\mathrm{Al}}_{7}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{\mathrm{Si}}_{8}$

 $\mathsf{T}^{\text{Al}}_{7}\text{-}\mathsf{O}^{\text{H}}\text{-}\mathsf{T}^{\text{Si}}_{11}$

 $\mathsf{T}^{Al}_{11}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{12}$

 $\mathsf{T}^{Al}_{11}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{10}$

 $\mathsf{T}^{Al}_{11}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{7}$

b ↓→a

 $\mathsf{T}^{Al}_{11}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{5}$

 $\mathsf{T}^{Al}_{12}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{3}$

 $\mathsf{T}^{Al}_{12}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{8}$

 $\mathsf{T}^{Al}_{12}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{11}$

 $\mathsf{T}^{Al}_{12}\text{-}\mathsf{O}^{\mathsf{H}}\text{-}\mathsf{T}^{Si}_{12}$

↓→a

Figure S10 The optimized configurations of p-xylene adsorption at the acidic sites of the Al substituted T1, T3, T5, T7, T11 and T12 sites in the framework