Electronic Supporting Information

Cu/SAPO-34 prepared by a facile ball milling method for enhanced catalytic performance in selective catalytic reduction of NO_x with NH_3

Huazhen Chang,^a Xuan Qin,^a Lei Ma,^b Tao Zhang,^{a,*} Junhua Li^c

^a School of Environment and Natural Resources, Renmin University of China, Beijing

100872, China

^b Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States

^c School of Environment, Tsinghua University, Beijing 100084, China

* Corresponding authors: E-mail address: zhangt@ruc.edu.cn

Tel.: +86 10 82502692, fax: +86 10 82502692

Fig. S1. NO conversion as a function of temperature over Cu/SAPO-34-B catalysts with different Cu loadings. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5\%$, N₂ balance, total flow rate 200 mL min⁻¹ and GHSV = 200 000 h⁻¹.

Fig. S2. NH₃-SCR lifetime tests of Cu/SAPO-34-M and Cu/SAPO-34-B at 400 and 350 °C, respectively. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5\%$, N₂ balance, total flow rate 200 mL min⁻¹ and GHSV = 200 000 h⁻¹.

Fig. S3. (a) NO conversion as a function of temperature over Cu/SAPO-34-B catalyst in the presence of H₂O and SO₂. (b) NO conversion as a function of temperature over Cu/SAPO-34-B catalyst after hydrothermal treatments at high and low temperature. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5\%$, $[H_2O] = 5\%$ (when used), $[SO_2]$ = 100 ppm (when used), N₂ balance, total flow rate 200 mL min⁻¹ and GHSV = 200 000 h⁻¹.

Fig. S4. Consumption of NH_4^+ ions and coordinated NH_3 at 150 °C upon passing $NO+O_2$ over Cu/SAPO-34-M (a₁) and Cu/SAPO-34-B (a₂) with preadsorbed NH_3 . Consumption of the adsorbed NO_x species at 150 °C upon passing NH_3 over Cu/SAPO-34-M (b₁) and Cu/SAPO-34-B (b₂) with preadsorbed $NO+O_2$.

Fig. S5. NO conversion as a function of temperature over Cu/SAPO-34-M and Cu/SAPO-34-B samples before calcination. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5\%$, N₂ balance, total flow rate 200 mL min⁻¹ and GHSV = 200 000 h⁻¹.