Supporting Information: Effect of microsolvation on the non-radiative decay of eumelanin monomer

Paulami Ghosh and Debashree Ghosh*

S1 Optimized ground state of gas phase DHI and the mono-hydrated species of DHI

S1.1 Optimized ground state geometry at (120,10e) SA-CASSCF/6-311++g(d,p) level of theory

С	0 5398418239	1 4590480814	0 000000000
c	-0 6920240928	0 789/29027/	0.000000000
C	-0.0920240928	0.1894290214	0.000000000
С	-0.7807795430	-0.6085472932	0.000000000
С	0.4014282579	-1.3725481500	0.000000000
С	1.6158778061	-0.7157485491	0.000000000
С	1.6902638125	0.6929326031	0.000000000
С	-2.1866842352	-0.9394361834	0.000000000
С	-2.8654114749	0.2386513882	0.000000000
Ν	-1.9711322823	1.2927062712	0.000000000
0	2.8245860334	-1.3536267515	0.000000000
0	2.8929696395	1.3084981618	0.000000000
Н	-2.6221156100	-1.9175963240	0.000000000
Н	-3.9203729094	0.4183904932	0.000000000
Н	0.6180610767	2.5306661922	0.000000000
Н	0.3669807643	-2.4489287539	0.000000000
Н	-2.2154709936	2.2518594524	0.000000000
Н	3.5815943911	0.6651962961	0.000000000
Н	2.7205125357	-2.2878289617	0.0000000000

S1.2 Optimized ground state geometry of conformer D-O1 at (140,14e)/6-311++g(d,p) level of theory

С	-0.9781395630	-1.6398767354	0.000000000
С	-1.6670637706	-0.4185733624	0.000000000
С	-0.9865756396	0.8302439573	0.000000000
С	0.4223009877	0.8408494541	0.000000000
С	1.0966642943	-0.3625520943	0.000000000
С	0.4022969705	-1.5954719030	0.000000000

С	-2.0048185254	1.8495947661	0.000000000
С	-3.2078163246	1.2096970954	0.000000000
Ν	-3.0120839920	-0.1564993767	0.000000000
0	2.4548494772	-0.4775136667	0.000000000
0	1.0997515195	-2.7528304634	0.000000000
Н	-1.8592068228	2.9105087048	0.000000000
Н	-4.1980158183	1.6162473873	0.000000000
Н	-1.4776862898	-2.5915704360	0.000000000
Н	0.9755710237	1.7640361838	0.000000000
Н	-3.7324968035	-0.8362641991	0.000000000
Н	2.0233179902	-2.5604676521	0.000000000
Н	2.8845783499	0.3651414162	0.000000000
0	3.8590951886	2.1044544944	0.000000000
Н	4.3322055590	2.4118014048	0.7562603146
Н	4.3322055590	2.4118014048	-0.7562603146

S1.3 Optimized ground state geometry of conformer D-O2 at (140,14e)/6-311++g(d,p) level of theory

С	-0.3976557173	-1.3568904273	0.000000000
С	-1.5970472704	-0.6400326289	0.000000000
С	-1.6291569226	0.7654211985	0.000000000
С	-0.4092692711	1.4697220079	0.000000000
С	0.7770913117	0.7664192785	0.000000000
С	0.7939552371	-0.6465511616	0.000000000
С	-3.0134619827	1.1546149420	0.000000000
С	-3.7459793969	0.0005924727	0.000000000
Ν	-2.8963831131	-1.0861027505	0.000000000
0	2.0025063725	1.3860750958	0.000000000
0	1.9465596369	-1.3513407391	0.000000000
Н	-3.4095572955	2.1494298888	0.000000000
Н	-4.8072110238	-0.1359246541	0.000000000
Н	-0.3643699353	-2.4309423546	0.000000000
Н	-0.3958016175	2.5471412031	0.000000000
Н	-3.1806934997	-2.0347910641	0.000000000
Н	2.7272833511	-0.7824347591	0.000000000
Н	1.8925841601	2.3196413641	0.000000000
0	4.7544756885	-0.1318983810	0.000000000
Н	4.7277199740	0.4365121244	0.7508744192
Н	4.7277199740	0.4365121244	-0.7508744192

S1.4 Optimized ground state geometry of conformer D-N1 at (140,14e)/6-311++g(d,p) level of theory

С	0.1618260872	-1.0931787173	0.000000000
С	-0.5879324269	0.0916553167	0.000000000

С	0.0319327461	1.3754563561	0.000000000
С	1.4380519658	1.4513895828	0.000000000
С	2.1674183999	0.2814190604	0.000000000
С	1.5388141790	-0.9843923116	0.000000000
С	-1.0339962540	2.3396953916	0.000000000
С	-2.2024086453	1.6333586015	0.000000000
Ν	-1.9407805998	0.2830175582	0.000000000
0	3.5370243487	0.2385816016	0.000000000
0	2.2910310225	-2.1095475450	0.000000000
Н	-0.9446049778	3.4067690408	0.000000000
Н	-3.2117945931	1.9894799137	0.000000000
Н	-0.2934596410	-2.0663882444	0.000000000
Н	1.9434583099	2.4030106172	0.000000000
Н	-2.6266222125	-0.4373493311	0.000000000
Н	3.2048780317	-1.8783999145	0.000000000
Н	3.9057443741	1.1030670532	0.000000000
0	-3.9593039730	-2.0771423761	0.000000000
Н	-4.2189825907	-2.5759194919	0.7561497498
Н	-4.2189825907	-2.5759194919	-0.7561497498

- S2 Orbitals used in active space based mathods in case of D-O1 microsolvated species
- S2.1 CASSCF natural orbitals used in (140,14e) active space for the calculation of VEEs

Figure S1: CASSCF natural orbitals involved in (140,14e)/6-311++g(d,p) active space for the calculation of VEEs of all conformations of mono-hydrated DHI

S2.2 CASSCF natural orbitals used in (40,2e) active space for MECP search

Figure S2: CASSCF natural orbitals used in (40,2e) active space for MECP search of D-O1 microsolvated species

S3 SA-CASPT2 potential energy surfaces (PESs) of DHI in gas phase

Figure S3: (a) SA-CASPT2 PES of isolated DHI along $\rm r_{O_5H}$ elongation (b) SA-CASPT2 PES of DHI along $\rm r_{N_1H}$ elongation. (c) SA-CASPT2 PES of isolated DHI along six membered ring puckering

S4 SA-CASSCF PESs of D-O1 microsolvated species

Figure S4: (a) SA-CASSCF PES of D-O1 along $\rm r_{O_5H}$ elongation. (b) MS-CASPT2 PES of D-O1 along $\rm r_{O_5H}$ elongation. (c) SA-CASSCF PES of D-O1 along $\rm r_{N_1H}$ elongation. (d) SA-CASSCF PES of D-O1 along six member ring puckering.

S5 SA-CASSCF PESs of D-N1 microsolvated species

Figure S5: (a) SA-CASSCF PES of D-N1 along $\rm r_{O_5H}$ elongation. (b) SA-CASSCF PES of D-N1 along six member ring puckering.

$\mathbf{S6}$	Topological parameters around the MECPs
	of isolated DHI and microsolvated species of
	DHI

Molecule	mode	σ_x	σ_y	d_{gh}	Δ_{gh}
	OH MECP	0.02045	-1.40292	0.19324	-0.64809
DHI	NH MECP	-0.87175	-0.12929	0.24844	0.89056
	six member ring puckered	0.0562	0.44572	0.16662	0.61658
	OH MECP	1.42065	-0.02887	0.20173	0.99563
D-O1	NH MECP	-0.96429	0.40707	0.20508	0.77298
	six member ring puckered	-0.43724	-0.02419	0.16782	0.68522
D-O2	OH MECP	-1.28578	-0.71556	0.18712	0.49274
	OH MECP	-0.74631	0.00167	0.37003	0.97398
D-N1	six member ring puckered	-0.36624	-0.28054	0.16288	0.60084

- **S7** g and h vectors around CIs of gas phase DHI and micro-solvated DHI species
- S7.1 g and h vectors around CIs of gas phase DHI

Figure S6: (a) g-vector around $S_0-S_3 r_{O_5H}$ elongated CI of DHI. (b) h-vector around $S_0-S_3 r_{O_5H}$ elongated CI of DHI. (c) g-vector around $S_0-S_2 r_{N_1H}$ elongated CI of DHI. (d) h-vector around $S_0-S_2 r_{N_1H}$ elongated CI of DHI. (e) gvector around S_0-S_1 nonplanar CI of DHI. (f) h-vector around S_0-S_1 nonplanar CI of DHI.

S7.2 g and h vectors around CIs of D-O1

Figure S7: (a) g-vector around $S_0-S_2 r_{N_1H}$ elongated CI of D-O1. (b) h-vector around $S_0-S_2 r_{N_1H}$ elongated CI of D-O1. (c) g-vector around S_0-S_1 nonplanar CI of D-O1. (d) h-vector around S_0-S_1 nonplanar CI of D-O1.

S7.3 g and h vectors around CIs of gas phase D-O2

Figure S8: (a) g-vector around S_0 - $S_2 r_{O_5H}$ elongated CI of D-O2. (b) h-vector around S_0 - $S_2 r_{O_5H}$ elongated CI of D-O2.

S7.4 g and h vectors around CIs of gas phase D-N1

Figure S9: (a) *g*-vector around S_0 - $S_3 r_{O_5H}$ elongated CI of D-N1. (b) *h*-vector around S_0 - $S_3 r_{O_5H}$ elongated CI of D-N1. (c) *g*-vector around S_0 - S_1 nonplanar CI of D-N1. (d) *h*-vector around S_0 - S_1 nonplanar CI of D-N1.

S8 Excited state optimized geometry of D-O1

Figure S10: Optically active $(\pi\pi^*)$ excited state optimized geometry at 7° C₄-C₅-C₆-C₇ dihedral angle: (a) (14o,14e) CASSCF/6-311++g(d,p) (b) TDDFT/6-311++g(d,p)

S8.1 VEEs at excited state optimized geometries of D-O1

Table S1: VEEs in eV at $\pi\pi^*$ excited state optimized geometries of D-O1 at CASPT2/6-311++g(d,p) level of theory

Geometry	$S_1 (\pi \sigma^{\star})$	$S_2(\pi\pi^{\star})$
TDDFT optimized	3.62	4.38
CASSCF optimized	3.60	4.37

S9 Vertical ionization energies (VIEs) of DHI, the microsolvated species of DHI, 4-hydroxybenzothiazole (4-HBT) and 4-HBT+water

Table S2: The VIEs in eV of DHI and the microsolvated species of DHI with EOM-IP-CCSD/6-311++g(d,p) level of theory.

-	Number	Orbital	EOM-IP-CCSD
DHI	1st IP	HOMO (39)	7.31
	2nd IP	HOMO-1 (38)	7.64
	3rd IP	HOMO-2 (37)	9.63
	4th IP	HOMO-3 (36)	10.56
	5th IP	HOMO-4 (35)	11.85
	Number	Orbital	EOM-IP-CCSD
	1st IP	HOMO (44)	6.97
D 01	2nd IP	HOMO-1 (43)	7.29
D-01	3rd IP	HOMO-2 (42)	9.36
	4th IP	HOMO-3 (41)	10.18
	5th IP	HOMO-4 (40)	11.43
	Number	Orbital	EOM-IP-CCSD
	1st IP	HOMO (44)	7.31
D 02	2nd IP	HOMO-1 (43)	7.74
D-02	3rd IP	HOMO-2 (42)	9.67
	4th IP	HOMO-3 (41)	10.61
	5th IP	HOMO-4 (40)	11.48
	Number	Orbital	EOM-IP-CCSD
	1st IP	HOMO (44)	7.01
D-N1	2nd IP	HOMO-1 (43)	7.32
	3rd IP	HOMO-2 (42)	9.35
	4th IP	HOMO-3 (41)	10.26
	5th ID	HOMO 4	(40)1159

-	Number			Orbital		DM-IP-CCSD
-	1:	st IP	H	IOMO (39)		8.12
4 UDT	2r	nd IP	H	OMO-1 (38)		8.92
4 - ΠD1	31	rd IP	H	OMO-2 (37)		10.38
	4t	h IP	H	OMO-3 (36)		10.53
	5t	h IP	H	OMO-4 (35)		11.66
		Numb	er	Orbital		EOM-IP-CCSD
		1st I	Р	HOMO (44	l)	7.96
	ton	2nd I	Ρ	HOMO-1 (4	3)	9.01
4-HB1+wa	ter	3rd I	Р	HOMO-2 (4	2)	10.39
		4th I	Р	HOMO-3 (4	1)	10.61
		5th I	Р	HOMO-5 (3	9)	11.40