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Theoretical background

1 Orientation factor

The orientation factor κ2 is expressed by the followed equation:1-3 

Scheme S1. Angles θ and Φ define the relative orientation of D-A couple.

where the angles θ and Φ define the relative orientation between the two interacting dipole 

moments. Notably, the κ2 can vary from 0 to 4 (κ2 = 0, 1, 4 upon the transition dipole moment of 

energy donor and acceptor is vertical, parallel, and end to end, respectively, and κ2 = 2/3 of the 

random orientation).

(1)

(2)
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2 Newns−Anderson model4

To obtain a relatively accurate electron-transfer time, Newns−Anderson approach was 

employed to compute the mixing of lowest unoccupied molecular orbital (LUMO) on 

sensitizer with the manifold virtue orbitals on TiO2. Accordingly, this mixing possesses a 

Lorentzian distribution: 

  

The broadening width ћΓ in Eq (3) is taken as the mean deviation of the LUMO 

(sensitizer) levels, and is defined as follows: 

where ELUMO(ads) is obtained by a weighted average: 

where Pi and εi are the portion of ith molecular orbital (MO) for sensitizer and its 

corresponding MO energy, respectively. Simultaneously, the Pi is evaluated by:

 

(3)

(4)

(5)

(6)
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3 Reorganization energy5

For the χ is the inner reorganization energy which contains the solute part χsen and the solvent 

part χsol

sen sen
1 2

2
  

 

Accordingly, the χsen can be defined as:

where the , ,  and contribute to the energies obtained from the excited 
𝐸𝐷𝐵𝐴
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state at the form of cation, energies of the relaxed excited state, the cationic energies calculated 

at the geometry of the excited state and the energies of the relaxed cationic state, respectively.

   As for the content related to χsol, it is expressed by:

where RD, RA, R denote the radii of the donor, acceptor and the distances between their centers, 

and the ε∞ as well as the εs stand for the optical frequency and static relative dielectric constants 

of the solvent, respectively. And Δq is the amount of the transferred electron.

(7)

(8)
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Figures
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Model 1

Fig. S1. (a)-(c) The different configurations in Model 1 (the energy labelled in each 

configuration represents for the relative energy, and the green as well as purple present for the 

positions of IQ21 and S2, respectively).
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0 eV 3.1 eV

(a) (b)

Model 2

Fig. S2. (a)-(b) The different configurations in Model 2 (the energy labelled in each 

configuration represents for the relative energy, and the green as well as purple present for the 

positions of IQ21 and S2, respectively).
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Fig. S3. The tilt angle (θ) between the axes of the dipole moment (μ) and the surface normal of 

the TiO2 film.
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(a) Model 1 (IQ21/S2-3/1)

L L+1

L+2 L+3

(b) Model 2 (S2/IQ21-3/1)

Fig. S4. The unoccupied molecular orbitals of whole adsorbents in Model 1 and 2.
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(a)

(b)

Fig. S5. The excitation energies of IQ21 and emission energies of S2 vs. simulated time span of 

5.5 ps: (a) for Model 1 and (b) for Model 2.
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(a) 3                                                                      (b) 4

Fig. S6. Co-sensitizing models on grid of Ti atoms (a) for Model 3 (IQ21/S2-2/1) and (b) for 

Model 4 (S2/IQ21-2/1).
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0 eV 2.3 eV

(a) (b)

Model 3

Fig. S7. (a)-(b) The different configurations in Model 3 (the energy labelled in each 

configuration represents for the relative energy, and the green as well as purple present for the 

positions of IQ21 and S2, respectively).
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0 eV 1.4 eV

(a) (b)

Model 4

Fig. S8. (a)-(b) The different configurations in Model 4 (the energy labelled in each 

configuration represents for the relative energy, and the green as well as purple present for the 

positions of IQ21 and S2, respectively).



S14

         (a) (b)

(c) (d)
Fig. S9. (a)-(d) Orientation factor κ2 (the blue series lines) and donor-acceptor distance rDA (the 

red series lines) as a function of the time span for Models 1-4.
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 (a)

(b)

Fig. S10. The scaled FRET rate kF’ of varied D-A couples (a) for Model 3 and (b) for Model 4 

(Cn defines the number of donor-acceptor couple, and the relative alignments between IQ21 and 

S2 are abstracted from the Fig. S6).
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Tables

Table S1. The data (vertical excited state/wavelength) calculated by different functionals of 

IQ21 and S2 in CH2Cl2 solution.

a Experimental values measured in CH2Cl2 solution from ref. 40.

Functionals B3LYP CAM-B3LYP MPW1K Exp.a

IQ21 1.73/715 2.35/528 2.24/553 2.23/557 

S2 1.77/699 2.52/492 2.38/522 2.59/478
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Table S2. The distances between the O atom of carboxyl of adsorbent and Ti atom on the surface 

(unit in Å).

Model Dye Co-sensitizer

IQ21 S2

1 2.21/3.50 2.13/2.15 2.14/3.14 2.02/2.90

2 2.11/2.02 2.02/2.11 2.04/2.11 2.02/2.16

Model 1 Model 2
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Table S3. Adsorption density ρ(IQ21), ρ(S2), and adsorption energy Eads(IQ21), Eads(S2) in 

Models 3 and 4, respectively.

Model Adsorption density/mol m-2 Eads/eV

ρ(IQ21) ρ(S2) Eads(IQ21) Eads(S2)

3 6.08×10-7 3.04×10-7 -5.70, -3.80 -6.89

4 3.04×10-7 6.08×10-7 -8.65 -4.53, -5.21
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Table S4. The parameters of surface dipole concentration Ns (unit m-2) and the magnitude of 

surface potential change ΔV (unit eV) for IQ21 and S2 in Models 3 and 4.

Model Ns(IQ21) Ns(S2) ΔV(IQ21) ΔV(S2)

3 0.4×1018 0.2×1018 0.15 0.10

4 0.2×1018 0.4×1018 0.08 0.10
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Table S5. Electron injection and electron-hole recombination rate constant, as well as electron 

injection efficiency in Models 3 and 4.

Model kinj/s-1

(IQ21)

kinj/s-1

(S2)

krec/s-1

(IQ21)

krec/s-1

(S2)

kinj’/s-1 krec’/s-1 ηinj’

3 11.4×1015

36.8×1015

18.8×1015 3.1×1015

20.8×1015

11.4×1015 67.0×1015 35.4×1015 0.65

4 34.3×1015 18.6×1015

19.5×1015

1.8×1015 4.4×1015

8.6×1015

72.4×1015 14.9×1015 0.83
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Table S6. FRET geometrical parameters of κ2 and rDA and the average kF’ for Models 3 and 4.

Model D-A couple(s) κ2 rDA/Å kF’×106(Å-6)

3 C1 0.47 6.26 8.11

C2 0.69 6.61 8.44

4 C1 0.78 4.71 75.28

C2 0.63 6.35 9.73
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