Electronic Supplementary Information for

Understanding the effect of the co-sensitizing ratio on the surface potential,

electron injection efficiency, and Förster resonance energy transfer

Jie Yang^a, Xing-Liang Peng^b, Zhu-Zhu Sun^c, Shuai Feng^d, Wei-Lu Ding^{*e}, Hong-Yan He^e, and

Ze-Sheng Li*a

a Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China b MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China c Energy-Saving Building Materials Innovative Collaboration Center of Henan Province, Xinyang Normal University, Xinyang, 464000, China d College of Chemistry and Chemical Engineering, Taishan University, Taian, 271021, China e Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process

Engineering, Chinese Academy of Sciences, Beijing 100190, China

Corresponding Author

- * Wei-Lu Ding (wlding@ipe.ac.cn)
- * Ze-Sheng Li (zeshengli@bit.edu.cn)

Contents

Orientation factor	S3
Newns–Anderson model	S4
Reorganization energy	S5
Fig. S1. The different configurations in Model 1	S6
Fig. S2. The different configurations in Model 2	S7
Fig. S3. The tilt angle between the axes of the dipole moment and the surface norm	al of the TiO_2
film	S8
Fig. S4. The unoccupied molecular orbitals of whole adsorbents of Model 1 and 2.	S9
Fig. S5. The excitation energies of IQ21 and emission energies of S2 vs. si	imulated time
span	S10
Fig. S6. Co-sensitizing models on grid of Ti atoms for Model 3 and 4	S11
Fig. S7. The different configurations in Model 3	S12
Fig. S8. The different configurations in Model 4	S13
Fig. S9. Orientation factor and donor-acceptor distance	S14
Fig. S10. The scaled FRET rate of varied D-A couples	S15
Table S1. The vertical excited state/wavelength tested by different functionals	S16
Table S2. The distances between the O of carboxyl of adsorbent and Ti on the surface	aceS17
Table S3 Adsorption density and adsorption energy in Models 3 and 4	S18
Table S4 The surface dipole concentration and surface potential change in Models	3 and 4 S19
Table S5 Electron injection, electron-hole recombination, electron injection efficient	ncy in Models
3 and 4	
Table S6 FRET geometrical parameters in Models 3 and 4	S21

Theoretical background

1 Orientation factor

Φ

X

The orientation factor κ^2 is expressed by the followed equation:¹⁻³

$$\kappa^{2} = (\sin \alpha_{\rm D} \sin \alpha_{\rm A} \cos \beta_{\rm DA} - 2 \cos \alpha_{\rm D} \cos(q_{\rm A}))^{2}$$

$$\alpha_{\rm D} = \arccos(\sin \theta_{\rm D} \sin \phi_{\rm D})$$

$$\alpha_{\rm A} = \arccos(\sin \theta_{\rm A} \sin \phi_{\rm A})$$

$$\beta_{\rm DA} = \arctan(\tan \theta_{\rm D} \cos \phi_{\rm D}) - \arctan(\tan \theta_{\rm A} \cos \phi_{\rm A})$$

$$Z^{\dagger} = \frac{\theta_{\rm D}}{\theta_{\rm D}}$$

Scheme S1. Angles θ and Φ define the relative orientation of D-A couple.

→y

where the angles θ and Φ define the relative orientation between the two interacting dipole moments. Notably, the κ^2 can vary from 0 to 4 ($\kappa^2 = 0, 1, 4$ upon the transition dipole moment of energy donor and acceptor is vertical, parallel, and end to end, respectively, and $\kappa^2 = 2/3$ of the random orientation).

(2)

2 Newns-Anderson model⁴

To obtain a relatively accurate electron-transfer time, Newns–Anderson approach was employed to compute the mixing of lowest unoccupied molecular orbital (LUMO) on sensitizer with the manifold virtue orbitals on TiO₂. Accordingly, this mixing possesses a Lorentzian distribution:

$$\rho_{\text{LUMO}}(E) = \frac{1}{\left(E - E \text{ LUMO}(\text{ads})\right)^2 + \left(\frac{\hbar\Gamma}{2}\right)^2}$$
(3)

The broadening width $\hbar\Gamma$ in Eq (3) is taken as the mean deviation of the LUMO (sensitizer) levels, and is defined as follows:

$$\hbar\Gamma = \sum_{i} p_{i} \left| \varepsilon_{i} - E_{\text{LUMO}}(\text{ads}) \right|$$
(4)

where $E_{LUMO}(ads)$ is obtained by a weighted average:

$$E_{\text{LUMO}}(\text{ads}) = \sum_{i} p_i \varepsilon_i$$
(5)

where P_i and ε_i are the portion of *i*th molecular orbital (MO) for sensitizer and its corresponding MO energy, respectively. Simultaneously, the P_i is evaluated by:

$$P_{i} = \frac{\sum_{j=1}^{A \in \text{sen}} (c_{ij}^{A})^{2}}{\sum_{j=1}^{A \in \text{sen} \otimes \text{TriO}_{2}} (c_{ij}^{A})^{2}}$$
(6)

3 Reorganization energy⁵

For the χ is the inner reorganization energy which contains the solute part χ^{sen} and the solvent part χ^{sol}

$$\chi = \frac{\chi_1^{\text{sen}} + \chi_2^{\text{sen}}}{2} \tag{7}$$

Accordingly, the χ^{sen} can be defined as:

$$\chi_{1}^{\text{sen}} = E_{(Q_{P})}^{\text{DBA*}} - E_{(Q_{r})}^{\text{DBA*}}$$
(8)

$$\chi_{2}^{\text{sen}} = E_{(Q_{r})}^{\text{DBA+}} - E_{(Q_{p})}^{\text{DBA+}}$$
(9)
where the $E_{(Q_{p})}^{\text{DBA+}}$, $E_{(Q_{r})}^{\text{DBA+}}$, $E_{(Q_{r})}^{\text{DBA+}}$ and $E_{(Q_{p})}^{\text{DBA+}}$ contribute to the energies obtained from the excited state at the form of cation, energies of the relaxed excited state, the cationic energies calculated at the geometry of the excited state and the energies of the relaxed cationic state, respectively.

As for the content related to χ^{sol} , it is expressed by:

$$\chi^{\rm sol} = \Delta q \left(\frac{1}{2R_{\rm D}} + \frac{1}{2R_{\rm A}} - \frac{1}{R}\right) \left(\frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_{\rm s}}\right) \tag{10}$$

where R_D , R_A , R denote the radii of the donor, acceptor and the distances between their centers, and the ε_{∞} as well as the ε_s stand for the optical frequency and static relative dielectric constants of the solvent, respectively. And Δq is the amount of the transferred electron.

Figures

Model 1

Fig. S1. (a)-(c) The different configurations in Model **1** (the energy labelled in each configuration represents for the relative energy, and the green as well as purple present for the positions of IQ21 and S2, respectively).

Model 2

Fig. S2. (a)-(b) The different configurations in Model **2** (the energy labelled in each configuration represents for the relative energy, and the green as well as purple present for the positions of IQ21 and S2, respectively).

Fig. S3. The tilt angle (θ) between the axes of the dipole moment (μ) and the surface normal of the TiO₂ film.

(b) Model 2 (S2/IQ21-3/1)

Fig. S4. The unoccupied molecular orbitals of whole adsorbents in Model 1 and 2.

Fig. S5. The excitation energies of IQ21 and emission energies of S2 *vs*. simulated time span of 5.5 ps: (a) for Model **1** and (b) for Model **2**.

Fig. S6. Co-sensitizing models on grid of Ti atoms (a) for Model **3** (IQ21/S2-2/1) and (b) for Model **4** (S2/IQ21-2/1).

Model 3

Fig. S7. (a)-(b) The different configurations in Model **3** (the energy labelled in each configuration represents for the relative energy, and the green as well as purple present for the positions of IQ21 and S2, respectively).

Model 4

Fig. S8. (a)-(b) The different configurations in Model **4** (the energy labelled in each configuration represents for the relative energy, and the green as well as purple present for the positions of IQ21 and S2, respectively).

Fig. S9. (a)-(d) Orientation factor κ^2 (the blue series lines) and donor-acceptor distance r_{DA} (the red series lines) as a function of the time span for Models 1-4.

Fig. S10. The scaled FRET rate k_F ' of varied D-A couples (a) for Model **3** and (b) for Model **4** (Cn defines the number of donor-acceptor couple, and the relative alignments between IQ21 and S2 are abstracted from the Fig. S6).

Tables

Functionals	B3LYP	CAM-B3LYP	MPW1K	Exp. ^a
IQ21	1.73/715	2.35/528	2.24/553	2.23/557
S2	1.77/699	2.52/492	2.38/522	2.59/478

Table S1. The data (vertical excited state/wavelength) calculated by different functionals of IO21 and S2 in CH₂Cl₂ solution.

^a Experimental values measured in CH₂Cl₂ solution from ref. 40.

Model	Dye			Co-sensitizer		
	IQ21			S2		
1	2.21/3.50	2.13/2.15	2.14/3.14	2.02/2.90		
2	2.11/2.02			2.02/2.11	2.04/2.11	2.02/2.16

Table S2. The distances between the O atom of carboxyl of adsorbent and Ti atom on the surface(unit in Å).

Model 1

Model 2

Table S3. Adsorption density $\rho(IQ21)$, $\rho(S2)$, and adsorption energy $E_{ads}(IQ21)$, $E_{ads}(S2)$ in Models **3** and **4**, respectively.

Model	Adsorption density/mol m ⁻²		$E_{\rm ads}/{\rm eV}$	
	$\rho(IQ21)$	$\rho(S2)$	$E_{\rm ads}({\rm IQ21})$	$E_{\rm ads}(S2)$
3	6.08×10 ⁻⁷	3.04×10 ⁻⁷	-5.70, -3.80	-6.89
4	3.04×10 ⁻⁷	6.08×10 ⁻⁷	-8.65	-4.53, -5.21

Table S4. The parameters of surface dipole concentration N_s (unit m⁻²) and the magnitude of surface potential change ΔV (unit eV) for IQ21 and S2 in Models **3** and **4**.

Model	<i>N</i> _s (IQ21)	<i>N</i> _s (S2)	ΔV (IQ21)	$\Delta V(S2)$
3	0.4×10 ¹⁸	0.2×10^{18}	0.15	0.10
4	0.2×10 ¹⁸	0.4×10 ¹⁸	0.08	0.10

Model	$k_{\rm inj}/{\rm s}^{-1}$	$k_{\rm inj}/{ m s}^{-1}$	$k_{\rm rec}/{\rm s}^{-1}$	$k_{\rm rec}/{\rm s}^{-1}$	$k_{\rm inj}$ '/s ⁻¹	$k_{\rm rec}'/{\rm s}^{-1}$	η_{inj}
	(IQ21)	(S2)	(IQ21)	(S2)			
3	11.4×10 ¹⁵	18.8×10 ¹⁵	3.1×10 ¹⁵	11.4×10 ¹⁵	67.0×10 ¹⁵	35.4×10 ¹⁵	0.65
	36.8×10 ¹⁵		20.8×10^{15}				
4	34.3×10 ¹⁵	18.6×10 ¹⁵	1.8×10^{15}	4.4×10 ¹⁵	72.4×10 ¹⁵	14.9×10 ¹⁵	0.83
		19.5×10 ¹⁵		8.6×10 ¹⁵			

 Table S5. Electron injection and electron-hole recombination rate constant, as well as electron

 injection efficiency in Models 3 and 4.

Model	D-A couple(s)	κ^2	$r_{\rm DA}/{ m \AA}$	$k_{\rm F}$ '×10 ⁶ (Å ⁻⁶)
3	C1	0.47	6.26	8.11
	C2	0.69	6.61	8.44
4	C1	0.78	4.71	75.28
	C2	0.63	6.35	9.73

Table S6. FRET geometrical parameters of κ^2 and r_{DA} and the average k_F ' for Models **3** and **4**.

References

- 1. V. Dryza and E. J. Bieske, J. Phys. Chem. C, 2014, **118**, 19646-19654.
- 2. H. Wang, B. Yue, Z. Xie, B. Gao, Y. Xu, L. Liu, H. Sun and Y. Ma, *Phys. Chem. Chem. Phys.*, 2013, **15**, 3527-3534.
- 3. M. Pastore and F. De Angelis, *J. Phys. Chem. Lett.*, 2012, **3**, 2146-2153.
- 4. P. Persson, M. J. Lundqvist, R. Ernstorfer, W. A. Goddard and F. Willig, *J. Chem. Theory Comput.*, 2006, **2**, 441-451.
- 5. J. Preat, J. Phys. Chem. C, 2010, **114**, 16716-16725.
- 6. J. Li, H. Wang, P. Persson and M. Thoss, J. Chem. Phys., 2012, **137**, 22A529.