Electronic supplementary information (ESI): Focus on the overlap density of wavefunctions in *GW* approximations

Koshi Okamura*

Ronin Institute, Montclair, New Jersey 07043, USA

E-mail: koshi.okamura@ronininstitute.org

S1 PAW datasets

PAW^{GS} and PAW^{QP} are listed in Table S1. PAW^{GS} is a slight modification to the JTH atomic datasets library v1.0 provided with ABINIT code, and PAW^{QP} is an extension to PAW^{GS} with additional sets of partial waves and projector function.

S2 Character tables of space group #221

The character tables of the symmorphic space group #221 at high symmetry points and along symmetry axes are summarized in Tables S2-S9. Point group operations $\{R_{\alpha}\}$ are described in the Hermann-Mauguin notation. The irreducible representations in the first, second, and third column are given in the notations of the Bilbao Crystallographic Server (Bilbao),^{S1,S2} Bouckaert-Smoluchowski-Wigner (BSW),^{S3} and point group (PG),^{S4} respectively.

S3 Representation of an atomic orbital

An atomic orbital has the representation of the full rotation group Γ^{atom} . The character χ^{atom} for an angular quantum number l and for either proper rotations $\{\alpha\}$ or improper rotations $\{\bar{\alpha}\}$ is described as

$$\chi_l^{\text{atom}}\{\alpha\} = \frac{\sin(l+\frac{1}{2})\alpha}{\sin\frac{1}{2}\alpha}$$
$$\chi_l^{\text{atom}}\{\bar{\alpha}\} = (-1)^l \quad \frac{\sin(l+\frac{1}{2})\alpha}{\sin\frac{1}{2}\alpha} \tag{S1}$$

The Γ^{atom} 's of s, p, and d orbitals for the groups of the wavevector at high symmetry points are summarized in Tables S10-S13 and decomposed into the irreducible representations. This procedure is based on ref. S5.

S4 Character of an equivalence representation

The character χ^{equiv} of an equivalence representation Γ^{equiv} for a space group operation $\{R_{\alpha}|\mathbf{R}_n\}$ is expressed by the trace of a matrix representation as

$$\chi^{\text{equiv}}\{R_{\alpha}|\mathbf{R}_{n}\} = \text{tr}\langle f_{\mathbf{k}}|\{R_{\alpha}|\mathbf{R}_{n}\}f_{\mathbf{k}}\rangle \tag{S2}$$

where $f_{\mathbf{k}}(\mathbf{r})$ is written in the form of a Bloch function with a cell-periodic function $g_{\mathbf{k}}(\mathbf{r})$ as

$$f_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}g_{\mathbf{k}}(\mathbf{r}) \tag{S3}$$

Here, $\mathbf{k} \cdot R_{\alpha}^{-1}\mathbf{r} = R_{\alpha}\mathbf{k} \cdot \mathbf{r}$ and $R_{\alpha}\mathbf{k} = \mathbf{k} + \mathbf{K}_{\alpha}$, where \mathbf{K}_{α} is a reciprocal lattice vector, and

$$\{R_{\alpha}|\mathbf{R}_{n}\}f_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{R}_{n}}e^{i(\mathbf{k}+\mathbf{K}_{\alpha})\cdot\mathbf{r}}\{R_{\alpha}|\mathbf{R}_{n}\}g_{\mathbf{k}}(\mathbf{r})$$
(S4)

Eqn (S2) then results in

$$\chi^{\text{equiv}}\{R_{\alpha}|\mathbf{R}_{n}\} = e^{i\mathbf{k}\cdot\mathbf{R}_{n}} \operatorname{tr}\langle g_{\mathbf{k}}|e^{i\mathbf{K}_{\alpha}\cdot\mathbf{r}}|\{R_{\alpha}|\mathbf{R}_{n}\}g_{\mathbf{k}}\rangle$$
(S5)

Note that the phase factor $e^{i\mathbf{k}\cdot\mathbf{R}_n}$ comes from the translation operation $\{\mathbf{R}_n\}$.

S5 Equivalence representation of an atomic arrangement

An atomic arrangement is expressed by a Bloch function in the form of eqn (S3) with

$$g_{\mathbf{k}}(\mathbf{r}) = \sum_{j} \delta(\mathbf{r} - \mathbf{r}_{j}) \tag{S6}$$

where \mathbf{r}_{j} is the position of atoms. Eqn (S5) then leads to

$$\chi^{\text{equiv}}\{R_{\alpha}|\mathbf{R}_{n}\} = e^{i\mathbf{k}\cdot\mathbf{R}_{n}}\sum_{j}e^{i\mathbf{K}_{\alpha}\cdot\mathbf{r}_{j}}\delta(\{R_{\alpha}^{-1}|\mathbf{R}_{n}\}\mathbf{r}_{j}-\mathbf{r}_{j})$$
(S7)

The Γ^{equiv} 's of Ti, Sr, and O₃ atoms for the groups of the wavevector at high symmetry points are summarized in Tables S14-S17 and decomposed into the irreducible representations.

S6 Equivalence representation of a set of plane waves

Plane waves are sorted by $|\mathbf{k}+\mathbf{G}|$ and a set of plane waves is expressed by a Bloch function in the form of eqn (S3) with

$$g_{\mathbf{k}}(\mathbf{r}) = \sum_{j} e^{\mathbf{i}\mathbf{G}_{j}\cdot\mathbf{r}}$$
(S8)

where \mathbf{G}_j is the reciprocal lattice vector. Here, $\mathbf{G}_j \cdot R_{\alpha}^{-1} \mathbf{r} = R_{\alpha} \mathbf{G}_j \cdot \mathbf{r}$ and $R_{\alpha} \mathbf{G}_j = \mathbf{G}_j + \mathbf{K}_{\alpha,j}$, where $\mathbf{K}_{\alpha,j}$ is a reciprocal lattice vector. Eqn (S5) then leads to

$$\chi^{\text{equiv}}\{R_{\alpha}|\mathbf{R}_{n}\} = e^{\mathbf{i}\mathbf{k}\cdot\mathbf{R}_{n}}\sum_{j}\delta(\mathbf{K}_{\alpha}+\mathbf{K}_{\alpha,j})$$
(S9)

The Γ^{equiv} 's of sets of plane waves for the groups of the wavevector at high symmetry points are summarized in Tables S18-S21 and decomposed into the irreducible representations. These procedures in Sections S4-S6 are based partially on ref. S5.

Atom	State	PA	W^{GS}	$\mathrm{PAW}^{\mathrm{QP}}$			
		$r_c(a_0)$	$E_{\rm ref}~(E_{\rm h})$	$r_c(a_0)$	$E_{\rm ref}~(E_{\rm h})$		
Sr	4s	1.81	-1.47	1.81	-1.47		
	5s	1.81	-0.13	1.81	-0.13		
	5s			1.81	1.50		
	4p	2.01	-0.81	2.01	-0.81		
	$5\mathrm{p}$	2.01	1.00	2.01	0.25		
	$5\mathrm{p}$			2.01	1.00		
	$5\mathrm{p}$			2.01	1.75		
	4d	2.21	-0.04	2.21	-0.04		
	4d			2.21	1.00		
	5d	2.21	1.50	2.21	1.50		
Ti	3s	2.30	-2.17	2.30	-2.17		
	4s	2.30	-0.14	2.30	-0.14		
	4s			2.30	1.50		
	$3\mathrm{p}$	2.11	-1.31	2.11	-1.31		
	$4\mathrm{p}$	2.11	0.75	2.11	0.00		
	$4\mathrm{p}$			2.11	1.00		
	$4\mathrm{p}$			2.11	1.50		
	3d	2.11	-0.08	2.11	-0.08		
	4d	2.11	0.75	2.11	0.75		
	4d			2.11	1.50		
	4d			2.11	2.25		
Ο	2s	1.41	-0.87	1.41	-0.87		
	3s	1.41	1.00	1.41	0.50		
	3s			1.41	1.50		
	2p	1.41	-0.34	1.41	-0.34		
	$3\mathrm{p}$	1.41	1.00	1.41	0.75		
	$3\mathrm{p}$			1.41	1.50		

Table S1: Description of PAW^{GS} and PAW^{QP} specifying the state, matching radius $r_c,$ and reference energy $E_{\rm ref}$

Bilbao	BSW	\mathbf{PG}	1^a	2^{b}	$2^{\prime c}$	3^d	4^e	1^{f}	m^g	$m'{}^{h}$	3^i	4^{j}
Γ_1^+	Γ_1^+	A_{1g}	1	1	1	1	1	1	1	1	1	1
Γ_1^-	Γ_1^-	A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
Γ_2^+	Γ_2^+	A_{2g}	1	1	-1	1	-1	1	1	-1	1	-1
Γ_2^-	Γ_2^-	A_{2u}	1	1	-1	1	-1	-1	-1	1	-1	1
Γ_3^+	Γ_{12}^+	E_{g}	2	2	0	-1	0	2	2	0	-1	0
Γ_3^-	Γ_{12}^{-}	E_{u}	2	2	0	-1	0	-2	-2	0	1	0
Γ_4^+	Γ_{15}^+	T_{1g}	3	-1	-1	0	1	3	-1	-1	0	1
Γ_4^-	Γ_{15}^{-}	T_{1u}	3	-1	-1	0	1	-3	1	1	0	-1
Γ_5^+	Γ_{25}^+	T_{2g}	3	-1	1	0	-1	3	-1	1	0	-1
Γ_5^-	Γ_{25}^{-}	T_{2u}	3	-1	1	0	-1	-3	1	-1	0	1
$a 1: \{1 \mathbf{R}\}$	${\mathfrak{l}}_n$, whe	ere \mathbf{R}_n	n = n	$a_1 a_1 + $	$n_2 \mathbf{a}_2$ -	$+ n_3 a_3$	$_{3}, \mathbf{a}_{1} =$	= a(1,	(0,0),	$\mathbf{a}_2 = a$	(0, 1, 0)	$\overline{)}, and$
		$\mathbf{a}_3 =$	a(0,	$(0,1), \epsilon$	and n_1	$, n_2, a$	and n_i	3 are i	integer			
			b 2	$2: \{2_{00}\}$	$_{01} 0\}, \{$	$[2_{010} 0]$	$\}, \{2_1$	0 .				
	$^{c} 2':$	${2_{110}}$)},{2	$2_{1\bar{1}0} 0\}$	$, \{2_{101}$	$ 0\}, \{2$	$2_{\bar{1}01} 0\}$	$, \{2_{01}\}$	$_{1} 0\},\{$	$2_{01\bar{1}} 0\}$	•	
$d 3: \{3$	$B_{111}^+ 0\}, \cdot$	$\{3^+_{\bar{1}\bar{1}1} 0$)},{3	$B^+_{\bar{1}1\bar{1}} 0\}$	$, \{3^+_{1\bar{1}\bar{1}\bar{1}}\}$	$ 0\}, \{3$	$B_{111}^{-} 0\}$	$\cdot, \{3^{-}_{\bar{1}\bar{1}}\}$	$ 0\}, \{$	$3^{-}_{\bar{1}1\bar{1}} 0\}$	$, \{3^{-}_{1\bar{1}\bar{1}\bar{1}}\}$	$ 0\}.$
	$e 4 : \cdot$	$\{4^{+}_{001} 0$	}, {4	$ _{010}^{+} 0\}$	$, \{4_{100}^{+-}\}$	$ 0\}, \{4$	$ _{001}^{-} 0\}$	$\cdot, \{4_{010}^{-1}\}$	$\frac{1}{2} 0\}, \{ e_{0}^{\dagger} 0\}$	$4^{-1}_{100} 0\}$		
					$f \bar{1}$:	$\{\bar{1} 0\}$	•					
			^{g}m	$: \{m_{00}, \dots, m_{00}\}$	$_{01} 0\}, \{$	$[m_{010}]$	$0\}, \{n$	$n_{100} 0 $	}.			
h	$m': \{n$	$n_{110} 0\}$	$\cdot, \{m$	$ _{1\bar{1}0} 0\}$	$, \{m_{10}\}$	$_{1} 0\},\{$	$m_{\bar{1}01} 0$	$0\}, \{m$	$u_{011} 0\}$	$, \{m_{01\bar{1}}\}$	$ 0\}.$	
$i \bar{3} : \{\bar{3}$	$\{b_{111}^+ 0\}, \{b_{111}^+ 0\}$	$\{\bar{3}^+_{\bar{1}\bar{1}1} 0$	$\}, \{\bar{3}, \{\bar{3}, \bar{3}, \bar{3},$	$^{+}_{\bar{1}1\bar{1}} 0\}$	$, \{\bar{3}^+_{1\bar{1}\bar{1}}\}$	$ 0\}, \{\bar{3}$	$\left \frac{1}{111} \right 0 $	$\{\bar{3}^{-}_{\bar{1}\bar{1}}\}$	$ 0\}, \{$	$\bar{3}^{-}_{\bar{1}1\bar{1}} 0\}$	$, \{\bar{3}^{-}_{1\bar{1}\bar{1}}\}$	$ 0\}.$
	$j \bar{4}:$	$\{\bar{4}^{+}_{001} 0$	$\}, \{\bar{4}, \bar{4}\}$	$_{010}^{+} 0\}$	$, \{\bar{4}_{100}^+\}$	$ 0\}, \{\bar{4}$	$\left[\frac{1}{001} 0 \right]$	$\{\bar{4}_{010}^{-1}\}$	$_{0} 0\},\{2$	$\bar{4}_{100}^{} 0\}$		

Table S2: Character table for the group of the wavevector at the Γ point $[\mathbf{k}_{\Gamma} = \frac{2\pi}{a}(0,0,0)]$ of the space group #221, which transforms isomorphically to the point group $m\bar{3}m$ (O_h)

Bilbao	BSW	PG	1^a	$2_y{}^b$	$2_h{}^c$	$2_{h'}{}^d$	4_y^e	$\bar{1}^{f}$	$m_y{}^g$	$m_v{}^h$	$m_d{}^i$	$\bar{4}_y{}^j$
X_1^+	X_1^+	A_{1g}	$1 \cdot T_{\mathbf{R}_n}{}^k$	1	1	1	1	1	1	1	1	1
X_1^-	X_1^-	A_{1u}	$1 \cdot T_{\mathbf{R}_n}$	1	1	1	1	-1	-1	-1	-1	-1
X_2^+	X_2^+	B_{1g}	$1 \cdot T_{\mathbf{R}_n}$	1	1	-1	-1	1	1	1	-1	-1
X_2^-	X_2^-	$\mathrm{B}_{1\mathrm{u}}$	$1 \cdot T_{\mathbf{R}_n}$	1	1	-1	-1	-1	-1	-1	1	1
X_3^+	X_4^+	A_{2g}	$1 \cdot T_{\mathbf{R}_n}$	1	-1	-1	1	1	1	-1	-1	1
X_3^-	X_4^-	A_{2u}	$1 \cdot T_{\mathbf{R}_n}$	1	-1	-1	1	-1	-1	1	1	-1
X_4^+	X_3^+	B_{2g}	$1 \cdot T_{\mathbf{R}_n}$	1	-1	1	-1	1	1	-1	1	-1
X_4^-	X_3^-	B_{2u}	$1 \cdot T_{\mathbf{R}_n}$	1	-1	1	-1	-1	-1	1	-1	1
X_5^+	X_5^+	E_{g}	$2 \cdot T_{\mathbf{R}_n}$	-2	0	0	0	2	-2	0	0	0
X_5^-	X_5^-	E_u	$2 \cdot T_{\mathbf{R}_n}$	-2	0	0	0	-2	2	0	0	0

Table S3: Character table for the group of the wavevector at an X point $[\mathbf{k}_{\mathrm{X}} = \frac{2\pi}{a}(0, \frac{1}{2}, 0)]$ of the space group #221, which transforms isomorphically to $4/mmm~(D_{4h})$

1: $\{1|\mathbf{R}_n\}$, where $\mathbf{R}_n = n_1\mathbf{a}_1 + n_2\mathbf{a}_2 + n_3\mathbf{a}_3$, $\mathbf{a}_1 = a(1,0,0)$, $\mathbf{a}_2 = a(0,1,0)$, and $\mathbf{a}_3 = a(0,0,1)$, and n_1, n_2 , and n_3 are integer.

$$b 2_y : \{2_{010}|0\}.$$

$$c 2_h : \{2_{001}|0\}, \{2_{100}|0\}.$$

$$d 2_{h'} : \{2_{101}|0\}, \{2_{\bar{1}01}|0\}.$$

$$e 4_y : \{4_{010}^+|0\}, \{4_{\bar{0}10}^-|0\}.$$

$$f \bar{1} : \{\bar{1}|0\}.$$

$$g m_y : \{m_{010}|0\}.$$

$$h m_v : \{m_{001}|0\}, \{m_{100}|0\}.$$

$$h m_v : \{m_{101}|0\}, \{m_{\bar{1}01}|0\}.$$

$$f \bar{4}_y : \{\bar{4}_{\bar{0}10}^+|0\}, \{\bar{4}_{\bar{0}10}^-|0\}.$$

$$h m_v : \{\bar{4}_{\bar{0}10}^-|0\}, \{\bar{4}_{\bar{0}10}^-|0\}.$$

$$h m_v : \{\bar{4}_{\bar{0}10}^-|0\}, \{\bar{4}_{\bar{0}10}^-|0\}.$$

$$h m_v : \{\bar{4}_{\bar{0}10}^-|0], \{\bar{4}_{\bar{0}10}^-|0].$$

$$h m_v : \{\bar{4}_{\bar{0}10}^-|0], \{\bar{4}_{\bar{0}10}^-|0].$$

$$h m_v : \{\bar{4}_{\bar{0}10}^-|0], \{\bar{4}_{\bar{0}10}^-|0].$$

BSW	ΡG	1^a	2_z^{b}	2_h^c	$2_{h'}{}^d$	4_z^e	$\bar{1}^{f}$	$m_z{}^g$	$m_v{}^h$	$m_d{}^i$	$\bar{4}_z{}^j$
M_1^+	A_{1g}	$1 \cdot T_{\mathbf{R}_n}{}^k$	1	1	1	1	1	1	1	1	1
M_1^-	A_{1u}	$1 \cdot T_{\mathbf{R}_n}$	1	1	1	1	-1	-1	-1	-1	-1
M_2^+	B_{1g}	$1 \cdot T_{\mathbf{R}_n}$	1	1	-1	-1	1	1	1	-1	-1
M_2^-	B_{1u}	$1 \cdot T_{\mathbf{R}_n}$	1	1	-1	-1	-1	-1	-1	1	1
M_4^+	A_{2g}	$1 \cdot T_{\mathbf{R}_n}$	1	-1	-1	1	1	1	-1	-1	1
M_4^-	A_{2u}	$1 \cdot T_{\mathbf{R}_n}$	1	-1	-1	1	-1	-1	1	1	-1
M_3^+	B_{2g}	$1 \cdot T_{\mathbf{R}_n}$	1	-1	1	-1	1	1	-1	1	-1
M_3^-	B_{2u}	$1 \cdot T_{\mathbf{R}_n}$	1	-1	1	-1	-1	-1	1	-1	1
M_5^+	E_{g}	$2 \cdot T_{\mathbf{R}_n}$	-2	0	0	0	2	-2	0	0	0
M_5^-	E_u	$2 \cdot T_{\mathbf{R}_n}$	-2	0	0	0	-2	2	0	0	0
	$\begin{array}{c} BSW \\ M_1^+ \\ M_1^- \\ M_2^- \\ M_4^- \\ M_4^- \\ M_3^- \\ M_3^- \\ M_5^- \\ M_5^- \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									

Table S4: Character table for the group of the wavevector at an M point $[\mathbf{k}_{\mathrm{M}} = \frac{2\pi}{a}(\frac{1}{2}, \frac{1}{2}, 0)]$ of the space group #221, which transforms isomorphically to $4/mmm~(D_{4h})$

1: {1| \mathbf{R}_n }, where $\mathbf{R}_n = n_1\mathbf{a}_1 + n_2\mathbf{a}_2 + n_3\mathbf{a}_3$, $\mathbf{a}_1 = a(1,0,0)$, $\mathbf{a}_2 = a(0,1,0)$, and $\mathbf{a}_3 = a(0,0,1)$, and n_1, n_2 , and n_3 are integer.

$$b 2_{z} : \{2_{001}|0\}.$$

$$c 2_{h} : \{2_{010}|0\}, \{2_{100}|0\}.$$

$$d 2_{h'} : \{2_{110}|0\}, \{2_{1\bar{1}0}|0\}.$$

$$e 4_{z} : \{4_{001}^{+}|0\}, \{4_{001}^{-}|0\}.$$

$$f \bar{1} : \{\bar{1}|0\}.$$

$$g m_{z} : \{m_{001}|0\}.$$

$$m_{v} : \{m_{010}|0\}, \{m_{100}|0\}.$$

$$h m_{v} : \{m_{110}|0\}, \{m_{1\bar{1}0}|0\}.$$

$$f \bar{4}_{z} : \{\bar{4}_{001}^{+}|0\}, \{\bar{4}_{001}^{-}|0\}.$$

$$k T_{\mathbf{R}_{n}} = e^{i\pi(n_{1}+n_{2})}$$

Bilbao	BSW	PG	1^a	2^{b}	$2^{\prime c}$	3^d	4^e	$\bar{1}^{f}$	m^g	m'^h	$\bar{3}^i$	$\bar{4}^{j}$	
R_1^+	R_1^+	A_{1g}	$1 \cdot T_{\mathbf{R}_n}{}^k$	1	1	1	1	1	1	1	1	1	
R_1^-	R_1^-	A_{1u}	$1 \cdot T_{\mathbf{R}_n}$	1	1	1	1	-1	-1	-1	-1	-1	
R_2^+	R_2^+	A_{2g}	$1 \cdot T_{\mathbf{R}_n}$	1	-1	1	-1	1	1	-1	1	-1	
R_2^-	R_2^-	A_{2u}	$1 \cdot T_{\mathbf{R}_n}$	1	-1	1	-1	-1	-1	1	-1	1	
R_3^+	R_{12}^{+}	E_g	$2 \cdot T_{\mathbf{R}_n}$	2	0	-1	0	2	2	0	-1	0	
R_3^-	$\mathbf{R}_{12}^{-} \mathbf{E}_{\mathbf{u}}^{-} 2 \cdot T_{\mathbf{R}_{n}}^{-} 2 0 -1 0 -2 -2 0 1 0$												
R_4^+	R_{15}^{+}	T_{1g}	$3 \cdot T_{\mathbf{R}_n}$	-1	-1	0	1	3	-1	-1	0	1	
R_4^-	R_{15}^{-}	T_{1u}	$3 \cdot T_{\mathbf{R}_n}$	-1	-1	0	1	-3	1	1	0	-1	
R_5^+	R_{25}^{+}	T_{2g}	$3 \cdot T_{\mathbf{R}_n}$	-1	1	0	-1	3	-1	1	0	-1	
R_5^-	R_{25}^-	T_{2u}	$3 \cdot T_{\mathbf{R}_n}$	-1	1	0	-1	-3	1	-1	0	1	
$a 1: \{1, 1, 2, 3, 3, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 1, 2, 3, 3, 1, 2, 3, 3, 1, 2, 3, 3, 1, 2, 3, 3, 1, 2, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$	$1 \mathbf{R}_n\},$	where	$\mathbf{R}_n = n_1 \mathbf{a}_1$	$+ n_2 \epsilon$	$n_2 + n_3$	$_{3}a_{3}, a_{1}$	$a_{l} = a($	1, 0, 0), \mathbf{a}_2 =	=a(0,	1, 0),	and	
		\mathbf{a}_3	=a(0,0,1)	, and	n_1, n_2	$_2$, and	n_3 ar	e inte	ger.				
			^b 2 : {	$2_{001} 0 $	$\}, \{2_{010}\}$	$_{0} 0\},\{$	$2_{100} 0$	$\}.$					
,	^c 2	$2': \{2_{11}\}$	$ 0 , \{2_{1\overline{1}0} $	$0\}, \{2$	$_{101} 0\},$	$\{2_{\bar{1}01}\}$	$ 0\}, \{2$	$2_{011} 0\}$	$, \{2_{01}\}$	[0].			
d 3 :	$: \{3^+_{111} 0$	$\}, \{3^+_{\bar{1}\bar{1}}\}$	$_{1} 0\},\{3^{+}_{\bar{1}1\bar{1}} $	$0\}, \{3$	$^{+}_{1\bar{1}\bar{1}} 0\},$	$\{3^{-}_{111} $	$0\}, \{3$	$S_{\bar{1}\bar{1}1}^{-} 0\}$	$, \{3^{-}_{\bar{1}1\bar{1}}\}$	$\{0\}, \{3\}$	$B_{1\bar{1}\bar{1}}^{-} 0\}$	·.	
	e Z	$4: \{4^+_{00}\}$	$_{1} 0\},\{4^{+}_{010} $	$0\}, \{4\}$	$_{100}^{+} 0\},$	$\{4^{-}_{001} $	$0\}, \{4$	$\frac{-}{100} 0\}$	$, \{4^{100}\}$	$ 0\}.$			
				f	$1:\{1 $	0}.							
			$g m : \{n\}$	$n_{001} 0 $	$\}, \{m_0\}$	$_{10} 0\},$	${m_{100}}$	$ 0\}.$					
	${}^{h}m':$	$\{m_{110}$	$ 0\}, \{m_{1\bar{1}0} $	$0\}, \{n$	$v_{101} 0\}$	$, \{m_{\bar{1}0}, \dots, m_{\bar{1}0}\}$	$ 0\}, -$	$\{m_{011} $	0 , { n	$n_{01\bar{1}} 0]$	· .		
i 3 :	${}^{i} 3: \{3^{+}_{111} 0\}, \{3^{+}_{\bar{1}\bar{1}\bar{1}} 0\}, \{\bar{3}^{+}_{\bar{1}\bar{1}\bar{1}} 0\}, \{\bar{3}^{+}_{\bar{1}\bar{1}\bar{1}} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1}} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1}} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1}} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1}\bar{1}} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1}\bar{1} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1}\bar{1} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1}\bar{1} 0\}, \{\bar{3}^{-}_{\bar{1}\bar{1}\bar{1} 0\}, \{\bar{3}^{-}_{\bar$												
	${}^{j} 4: \{4^{+}_{001} 0\}, \{4^{+}_{010} 0\}, \{4^{+}_{100} 0\}, \{4^{-}_{001} 0\}, \{4^{-}_{010} 0\}, \{\bar{4}^{-}_{100} 0\}.$												
			k	$T_{\mathbf{R}_n}$	$= e^{i\pi(n)}$	$n_1 + n_2 + n_3$	$n_{3})$						

Table S5: Character table for the group of the wavevector at an R point $[\mathbf{k}_{\mathrm{R}} = \frac{2\pi}{a}(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})]$ of the space group #221, which transforms isomorphically to the point group $m\bar{3}m$ (O_h)

Table S6: Character table for the group of the wavevector along a Δ axis $[\mathbf{k}_{\Delta} = \frac{2\pi}{a}(0, \frac{1}{2}u, 0)$, where 0 < u < 1] of the space group #221, which transforms isomorphically to 4mm (C_{4v})

Bilbao	BSW	ΡG	1^a	2^b	4^c	$m_v{}^d$	m_d^{e}
Δ_1	Δ_1	A_1	$1 \cdot T_{\mathbf{R}_n}{}^f$	1	1	1	1
Δ_2	Δ_2	B_1	$1 \cdot T_{\mathbf{R}_n}$	1	-1	1	-1
Δ_3	$\Delta_{2'}$	B_2	$1 \cdot T_{\mathbf{R}_n}$	1	-1	-1	1
Δ_4	$\Delta_{1'}$	A_2	$1 \cdot T_{\mathbf{R}_n}$	1	1	-1	-1
Δ_5	Δ_5	Ε	$2 \cdot T_{\mathbf{R}_n}$	-2	0	0	0

^a 1: {1| \mathbf{R}_n }, where $\mathbf{R}_n = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$, $\mathbf{a}_1 = a(1, 0, 0)$, $\mathbf{a}_2 = a(0, 1, 0)$, and $\mathbf{a}_3 = a(0, 0, 1)$, and n_1, n_2 , and n_3 are integer.

$${}^{c} 4: \{4^{+}_{010}|0\}, \{4^{-}_{010}|0\}.$$

$${}^{d} m_{v}: \{m_{001}|0\}, \{m_{100}|0\}.$$

$${}^{e} m_{d}: \{m_{101}|0\}, \{m_{\bar{1}01}|0\}.$$

$${}^{f} T_{\mathbf{R}_{n}} = e^{i\pi n_{2}u}$$

Table S7: Character table for the group of the wavevector along a Σ axis $[\mathbf{k}_{\Sigma} = \frac{2\pi}{a}(\frac{1}{2}u, \frac{1}{2}u, 0)$, where 0 < u < 1] of the space group #221, which transforms isomorphically to mm2 (C_{2v})

Bilbao	BSW	\mathbf{PG}	1^a	$2'^{b}$	$m_z{}^c$	m'^d
Σ_1	Σ_1	A_1	$1 \cdot T_{\mathbf{R}_n}{}^e$	1	1	1
Σ_2	Σ_4	B_2	$1 \cdot T_{\mathbf{R}_n}$	-1	1	-1
Σ_3	Σ_3	B_1	$1 \cdot T_{\mathbf{R}_n}$	-1	-1	1
Σ_4	Σ_2	A_2	$1 \cdot T_{\mathbf{B}_{\mathbf{m}}}$	1	-1	-1

^a 1: {1|**R**_n}, where $\mathbf{R}_n = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$, $\mathbf{a}_1 = a(1, 0, 0)$, $\mathbf{a}_2 = a(0, 1, 0)$, and $\mathbf{a}_3 = a(0, 0, 1)$, and n_1, n_2 , and n_3 are integer. ^b 2': {2₁₁₀|0}. ^c $m_z : \{m_{001}|0\}$. ^d $m' : \{m_{1\bar{1}0}|0\}$. ^e $T_{\mathbf{R}_n} = e^{i\pi(n_1u+n_2u)}$

Table S8: Character table for the group of the wavevector along a Λ axis $[\mathbf{k}_{\Lambda} = \frac{2\pi}{a}(\frac{1}{2}u, \frac{1}{2}u, \frac{1}{2}u)$, where 0 < u < 1 of the space group #221, which transforms isomorphically to 3m (C_{3v})

	Bilbao	BSW	\mathbf{PG}	1^a	3^b	$m_d{}^c$		
	Λ_1	Λ_1	A_1	$1 \cdot T_{\mathbf{R}_n}{}^d$	1	1		
	Λ_2	Λ_2	A_2	$1 \cdot T_{\mathbf{R}_n}$	1	-1		
	Λ_3	Λ_3	Ε	$2 \cdot T_{\mathbf{R}_n}$	-1	0		
$1: \{1 \mathbf{R}_n\}, \text{ when }$	re $\mathbf{R}_n = c$	$\overline{n_1 \mathbf{a}_1 + n_2}$	$n_2 a_2 + $	$n_3 a_3, a_1 =$	a(1, 0)	$(0,0), \mathbf{a}_2$	$a_2 = a(0, 1, 0)$	0), and
	$\mathbf{a}_3 = a(0,$	(0, 1), a	nd n_1 ,	n_2 , and n_3	are in	nteger.		
		b 3 :	$\{3^+_{111} 0$	$\}, \{3^{-}_{111} 0\}.$				
	$^{c}~m_{c}$	$_d:\{m_{1\bar{1}}\}$	$_{0} 0\},\{a$	$m_{\bar{1}01} 0\}, \{m$	$n_{01\bar{1}} 0]$	}.		
		^d $T_{\mathbf{R}_n}$	$= e^{i\pi}$	$n_1u+n_2u+n_3u$	u)			

a

Table S9: Character table for the group of the wavevector along a Z axis $[\mathbf{k}_{Z} = \frac{2\pi}{a}(\frac{1}{2}u, \frac{1}{2}, 0)$, where 0 < u < 1] of the space group #221, which transforms isomorphically to mm2 (C_{2v})

Bilbao	BSW	PG	1^a	2_x^{b}	$m_z{}^c$	$m_y{}^d$
Z_1	Z_1	A_1	$1 \cdot T_{\mathbf{R}_n}{}^e$	1	1	1
Z_2	Z_2	A_2	$1 \cdot T_{\mathbf{R}_n}$	1	-1	-1
Z_3	Z_4	B_2	$1 \cdot T_{\mathbf{R}_n}$	-1	-1	1
Z_4	Z_3	B_1	$1 \cdot T_{\mathbf{R}_n}$	-1	1	-1

^{*a*} 1: {1| \mathbf{R}_n }, where $\mathbf{R}_n = n_1\mathbf{a}_1 + n_2\mathbf{a}_2 + n_3\mathbf{a}_3$, $\mathbf{a}_1 = a(1, 0, 0)$, $\mathbf{a}_2 = a(0, 1, 0)$, and $\mathbf{a}_3 = a(0, 0, 1)$, and n_1, n_2 , and n_3 are integer.

$${}^{b} 2_{x} : \{2_{100}|0\}.$$

$${}^{c} m_{z} : \{m_{001}|0\}.$$

$${}^{d} m_{y} : \{m_{010}|0\}.$$

$${}^{e} T_{\mathbf{B}_{x}} = e^{i\pi(n_{1}u+n_{2})}$$

Table S10: Representations of s, p, and d orbitals for the group of the wavevector at the Γ point of the space group #221

$m\bar{3}m$	1	2	2'	3	4	Ī	m	m'	$\bar{3}$	$\overline{4}$	Irreducible representations
$\Gamma_{\rm s}^{\rm atom}$	1	1	1	1	1	1	1	1	1	1	Γ_1^+
$\Gamma_{\rm p}^{\rm atom}$	3	-1	-1	0	1	-3	1	1	0	-1	Γ_4^-
$\Gamma_{\rm d}^{ m atom}$	5	1	1	-1	-1	5	1	1	-1	-1	$\Gamma_3^+ \oplus \Gamma_5^+$

Table S11: Representations of s, p, and d orbitals for the group of the wavevector at an X point of the space group #221

4/mmm	1	2_y	2_h	$2_{h'}$	4_y	Ī	m_y	m_v	m_d	$\bar{4}_y$	Irreducible representations
X_s^{atom}	1	1	1	1	1	1	1	1	1	1	X_1^+
X_p^{atom}	3	-1	-1	-1	1	-3	1	1	1	-1	$X_3^- \oplus X_5^-$
${\rm X}_{ m d}^{ m atom}$	5	1	1	1	-1	5	1	1	1	-1	$X_1^+ \oplus X_2^+ \oplus X_4^+ \oplus X_5^+$

Table S12: Representations of s, p, and d orbitals for the group of the wavevector at an M point of the space group #221

4/mmm	1	2_z	2_h	$2_{h'}$	4_z	Ī	m_z	m_v	m_d	$\bar{4}_z$	Irreducible representations
M_s^{atom}	1	1	1	1	1	1	1	1	1	1	M_1^+
M_{p}^{atom}	3	-1	-1	-1	1	-3	1	1	1	-1	${ m M}_3^- \oplus { m M}_5^-$
M_d^{itom}	5	1	1	1	-1	5	1	1	1	-1	$M_1^+ \oplus M_2^+ \oplus M_4^+ \oplus M_5^+$

Table S13: Representations of s, p, and d orbitals for the group of the wavevector at an R point of the space group #221

$m\bar{3}m$	1	2	2'	3	4	Ī	m	m'	$\bar{3}$	$\bar{4}$	Irreducible representations
R_s^{atom}	1	1	1	1	1	1	1	1	1	1	R_1^+
R_p^{atom}	3	-1	-1	0	1	-3	1	1	0	-1	R_4^-
${ m R}_{ m d}^{ m itom}$	5	1	1	-1	-1	5	1	1	-1	-1	$\mathrm{R}^+_3 \oplus \mathrm{R}^+_5$

Table S14: Equivalence representations of Ti, Sr, and O_3 atoms in SrTiO₃ for the group of the wavevector at the Γ point of the space group #221

$m\bar{3}m$	1	2	2'	3	4	Ī	m	m'	$\bar{3}$	4	Irreducible representations
$\Gamma_{\rm Ti}^{\rm equiv}$	1	1	1	1	1	1	1	1	1	1	Γ_1^+
$\Gamma_{ m Sr}^{ m equiv}$	1	1	1	1	1	1	1	1	1	1	Γ_1^+
$\Gamma_{O_3}^{equiv}$	3	3	1	0	1	3	3	1	0	1	$\Gamma_1^+ \oplus \Gamma_3^+$

Table S15: Equivalence representations of Ti, Sr, and O_3 atoms in SrTiO₃ for the group of the wavevector at an X point of the space group #221

4/mmm	1	2_y	2_h	$2_{h'}$	4_y	Ī	m_y	m_v	m_d	$\bar{4}_y$	Irreducible representations
X_{Ti}^{equiv}	1	1	1	1	1	1	1	1	1	1	X_1^+
$\mathbf{X}^{\mathrm{equiv}}_{\mathrm{Sr}}$	1	1	-1	-1	1	-1	-1	1	1	-1	X_3^-
$X_{O_3}^{equiv}$	3	3	1	-1	1	1	1	3	1	-1	$X_1^+ \oplus X_2^+ \oplus X_3^-$

Table S16: Equivalence representations of Ti, Sr, and O_3 atoms in SrTiO₃ for the group of the wavevector at an M point of the space group #221

4/mmm	1	2_z	2_h	$2_{h'}$	4_z	1	m_z	m_v	m_d	$\bar{4}_z$	Irreducible representations
M_{Ti}^{equiv}	1	1	1	1	1	1	1	1	1	1	M_1^+
${ m M}_{ m Sr}^{ m equiv}$	1	1	-1	1	-1	1	1	-1	1	-1	M_4^+
${ m M}_{{ m O}_3}^{ m equiv}$	3	-1	1	1	1	-1	3	1	1	1	$\mathrm{M}_1^+ \oplus \mathrm{M}_5^-$

Table S17: Equivalence representations of Ti, Sr, and O_3 atoms in SrTiO₃ for the group of the wavevector at an R point of the space group #221

$m\bar{3}m$	1	2	2'	3	4	Ī	m	m'	$\bar{3}$	$\bar{4}$	Irreducible representations
R_{Ti}^{equiv}	1	1	1	1	1	1	1	1	1	1	R_1^+
$\mathrm{R}_{\mathrm{Sr}}^{\mathrm{equiv}}$	1	1	-1	1	-1	-1	-1	1	-1	1	R_2^-
$R_{O_3}^{equiv}$	3	-1	-1	0	1	-3	1	1	0	-1	R_4^-

Table S18: Equivalence representations of sets of plane waves $e^{i(\mathbf{k}_{\Gamma}+\mathbf{G})\cdot\mathbf{r}}$ for the group of the wavevector at the Γ point $[\mathbf{k}_{\Gamma}=\frac{2\pi}{a}(0,0,0)]$ of the space group #221, which transforms isomorphically to $m\bar{3}m$ (O_h). Plane waves are sorted by $|\mathbf{k}_{\Gamma}+\mathbf{G}|$ and labeled by $\frac{a}{2\pi}\{\mathbf{k}_{\Gamma}+\mathbf{G}\}$

$rac{a}{2\pi}\{\mathbf{k}_{\Gamma}{+}\mathbf{G}\}$	1	2	2'	3	4	ī	m	m'	$\bar{3}$	4	Irreducible representations
$\{0, 0, 0\}$	1	1	1	1	1	1	1	1	1	1	Γ_1^+
$\{1, 0, 0\}$	6	2	0	0	2	0	4	2	0	0	$\Gamma_1^+\oplus\Gamma_3^+\oplus\Gamma_4^-$
$\{1, 1, 0\}$	12	0	2	0	0	0	4	2	0	0	$\Gamma_1^+\oplus\Gamma_3^+\oplus\Gamma_4^-\oplus\Gamma_5^+\oplus\Gamma_5^-$
$\{1, 1, 1\}$	8	0	0	2	0	0	0	4	0	0	$\Gamma_1^+\oplus\Gamma_2^-\oplus\Gamma_4^-\oplus\Gamma_5^+$
$\{2, 0, 0\}$	6	2	0	0	2	0	4	2	0	0	$\Gamma_1^+\oplus\Gamma_3^+\oplus\Gamma_4^-$
$\{2, 1, 0\}$	24	0	0	0	0	0	8	0	0	0	$\Gamma_1^+ \oplus \Gamma_2^+ \oplus 2\Gamma_3^+ \oplus \Gamma_4^+ \oplus 2\Gamma_4^- \oplus \Gamma_5^+ \oplus 2\Gamma_5^-$
$\{2, 1, 1\}$	24	0	0	0	0	0	0	4	0	0	$\Gamma_1^+ \oplus \Gamma_2^- \oplus \Gamma_3^+ \oplus \Gamma_3^- \oplus \Gamma_4^+ \oplus 2\Gamma_4^- \oplus 2\Gamma_5^+ \oplus \Gamma_5^-$
$\{2, 2, 0\}$	12	0	2	0	0	0	4	2	0	0	$\Gamma_1^+\oplus\Gamma_3^+\oplus\Gamma_4^-\oplus\Gamma_5^+\oplus\Gamma_5^-$
$\{2, 2, 1\}$	24	0	0	0	0	0	0	4	0	0	$\Gamma_1^+ \oplus \Gamma_2^- \oplus \Gamma_3^+ \oplus \Gamma_3^- \oplus \Gamma_4^+ \oplus 2\Gamma_4^- \oplus 2\Gamma_5^+ \oplus \Gamma_5^-$
$\{3, 0, 0\}$	6	2	0	0	2	0	4	2	0	0	$\Gamma_1^+\oplus\Gamma_3^+\oplus\Gamma_4^-$
$\{3, 1, 0\}$	24	0	0	0	0	0	8	0	0	0	$\Gamma_1^+ \oplus \Gamma_2^+ \oplus 2\Gamma_3^+ \oplus \Gamma_4^+ \oplus 2\Gamma_4^- \oplus \Gamma_5^+ \oplus 2\Gamma_5^-$
$\{3, 1, 1\}$	24	0	0	0	0	0	0	4	0	0	$\Gamma_1^+ \oplus \Gamma_2^- \oplus \Gamma_3^+ \oplus \Gamma_3^- \oplus \Gamma_4^+ \oplus 2\Gamma_4^- \oplus 2\Gamma_5^+ \oplus \Gamma_5^-$
$\{2, 2, 2\}$	8	0	0	2	0	0	0	4	0	0	$\Gamma_1^+\oplus\Gamma_2^-\oplus\Gamma_4^-\oplus\Gamma_5^+$
$\{3, 2, 1\}$	48	0	0	0	0	0	0	0	0	0	$\Gamma_1^+ \oplus \Gamma_1^- \oplus \Gamma_2^+ \oplus \Gamma_2^- \oplus 2\Gamma_3^+ \oplus 2\Gamma_3^- \oplus 3\Gamma_4^+ \oplus 3\Gamma_4^-$
											$\oplus 3\Gamma_5^+ \oplus 3\Gamma_5^-$

Table S19: Equivalence representations of sets of plane waves $e^{i(\mathbf{k}_X + \mathbf{G}) \cdot \mathbf{r}}$ for the group of the wavevector at an X point $[\mathbf{k}_{X} = \frac{2\pi}{a}(0, \frac{1}{2}, 0)]$ of the space group #221, which transforms isomorphically to 4/mmn (D_{4h}) . Plane waves are sorted by $|\mathbf{k}_X + \mathbf{G}|$ and labeled by $\frac{a}{2\pi} \{\mathbf{k}_X + \mathbf{G}\}$

$rac{a}{2\pi}\{\mathbf{k}_{\mathrm{X}}{+}\mathbf{G}\}$	1	2_y	2_h	$2_{h'}$	4_y	Ī	m_y	m_v	m_d	$\bar{4}_y$	Irreducible representations
$\{0, \frac{1}{2}, 0\}^a$	2	2	0	0	2	0	0	2	2	0	$\mathrm{X}^+_1 \oplus \mathrm{X}^3$
$\{1,rac{1}{2},0\}^b$	8	0	0	0	0	0	0	4	0	0	$X_1^+ \oplus X_2^+ \oplus X_3^- \oplus X_4^- \oplus X_5^+ \oplus X_5^-$
$\{0, \frac{3}{2}, 0\}^c$	2	2	0	0	2	0	0	2	2	0	$\mathrm{X}^+_1 \oplus \mathrm{X}^3$
$\{1,rac{1}{2},1\}^d$	8	0	0	0	0	0	0	0	4	0	$X_1^+ \oplus X_2^- \oplus X_3^- \oplus X_4^+ \oplus X_5^+ \oplus X_5^-$
$\{1, \frac{3}{2}, 0\}^e$	8	0	0	0	0	0	0	4	0	0	$X_1^+ \oplus X_2^+ \oplus X_3^- \oplus X_4^- \oplus X_5^+ \oplus X_5^-$
$\{1, rac{3}{2}, 1\}^f$	8	0	0	0	0	0	0	0	4	0	$X_1^+ \oplus X_2^- \oplus X_3^- \oplus X_4^+ \oplus X_5^+ \oplus X_5^-$
$\{2, \frac{1}{2}, 0\}^g$	8	0	0	0	0	0	0	4	0	0	$X_1^+ \oplus X_2^+ \oplus X_3^- \oplus X_4^- \oplus X_5^+ \oplus X_5^-$
$\{2, \frac{1}{2}, 1\}^h$	16	0	0	0	0	0	0	0	0	0	$X_1^+ \oplus X_1^- \oplus X_2^+ \oplus X_2^- \oplus X_3^+ \oplus X_3^-$
-											$\oplus \mathrm{X}^+_4 \oplus \mathrm{X}^4 \oplus 2\mathrm{X}^+_5 \oplus 2\mathrm{X}^5$
					$a \frac{a}{2\pi}$	G's	are ((0, 0, 0)	$\overline{(0, 0)}, (0, 0)$	$\bar{1}, 0)$	•
$\frac{b}{2\pi}$	l's ar	e (1,	(0, 0)	$, (1, \bar{1})$	Ī, 0),	$(\bar{1}, 0)$	(0, 0), ($(\overline{1},\overline{1},0)$	(0, (0, 0))	(0, 1)	$(0, \overline{1}, 1), (0, 0, \overline{1}), (0, \overline{1}, \overline{1}).$
27					$c \frac{a}{2\pi}$	\mathbf{G} 's	are ((0, 1, 0)), (0,	$(\bar{2}, 0)$	•
$\frac{d}{2\pi}$	f's ar	e (1,	(0, 1)	$, (1, \bar{1})$	Ī, 1Ĵ,	(1, 0)	$(0, \bar{1}),$	$(1, \bar{1}, \bar{1})$	$\overline{\mathfrak{l}}), (\overline{1},$	(0, 1)	$, (\bar{1}, \bar{1}, 1), (\bar{1}, 0, \bar{1}), (\bar{1}, \bar{1}, \bar{1}).$
$e \frac{2\pi}{2\pi} \mathbf{G}$	f's ar	e (1,	(1, 0)	$,(1,\bar{2})$	$(\bar{2}, 0),$	$(\bar{1}, 1)$	(1, 0), ($(\bar{1}, \bar{2}, 0)$), (0,	1, 1)	$, (0, \overline{2}, 1), (0, 1, \overline{1}), (0, \overline{2}, \overline{1}).$
$f \frac{a}{2\pi} \mathbf{C}$	f's ar	e (1,	(1, 1)	$,(1,\bar{2})$	$(\bar{2}, 1),$	(1, 1)	$1, \bar{1}), ($	$(1, \overline{2}, \overline{1})$	$\overline{I}), (\overline{1},$	1, 1)	$, (\bar{1}, \bar{2}, 1), (\bar{1}, 1, \bar{1}), (\bar{1}, \bar{2}, \bar{1}).$
$g \frac{a}{2\pi} \mathbf{G}$	l's ar	(2,	(0, 0)	$, (2, \bar{1})$	Ī, 0),	$(\bar{2}, 0)$	(0, 0), (0, 0)	$(\bar{2}, \bar{1}, 0)$	(0, (0, 0))	(0, 2)	$(0, \overline{1}, 2), (0, 0, \overline{2}), (0, \overline{1}, \overline{2}).$
2 / h	$\frac{a}{2\pi}\mathbf{G}$	s are	(2, 0)), 1), ($(2,\overline{1},$	1),	(2, 0,]	(1), (2)	$\overline{1},\overline{1}),$	$(\bar{2}, 0$	$(,1), (\bar{2}, \bar{1}, 1),$
$(ar{2},0,ar{1}),$	$, (\bar{2}, \bar{1})$	$,\overline{1}),$	(1, 0,	2), (1	$1, \bar{1}, \bar{2}$	$(\frac{1}{2}), (\frac{1}{2})$	$\bar{1}, 0, 2$	$),(\bar{1},\bar{1})$	$\bar{l}, 2), ($	(1, 0,	$(\bar{2}), (1, \bar{1}, \bar{2}), (\bar{1}, 0, \bar{2}), (\bar{1}, \bar{1}, \bar{2}).$

Table S20: Equivalence representations of sets of plane waves $e^{i(\mathbf{k}_M + \mathbf{G}) \cdot \mathbf{r}}$ for the group of the wavevector at an M point $[\mathbf{k}_{\mathrm{M}} = \frac{2\pi}{a}(\frac{1}{2}, \frac{1}{2}, 0)]$ of the space group #221, which transforms iso-morphically to 4/mmm (D_{4h}) . Plane waves are sorted by $|\mathbf{k}_{\mathrm{M}} + \mathbf{G}|$ and labeled by $\frac{a}{2\pi} \{\mathbf{k}_{\mathrm{M}} + \mathbf{G}\}$

$rac{a}{2\pi}\{\mathbf{k}_{\mathrm{M}}{+}\mathbf{G}\}$	1	2_z	2_h	$2_{h'}$	4_z	Ī	m_z	m_v	m_d	$\bar{4}_z$	Irreducible representations
$\frac{2\pi}{\{\frac{1}{2},\frac{1}{2},0\}^a}$	4	0	0	2	0	0	4	0	2	0	$M_1^+ \oplus M_4^+ \oplus M_5^-$
$\{rac{1}{2},rac{1}{2},1\}^{b}$	8	0	0	0	0	0	0	0	4	0	$M_1^+ \oplus M_2^- \oplus M_3^- \oplus M_4^+ \oplus M_5^+ \oplus M_5^-$
$\{rac{3}{2},rac{1}{2},0\}^{c}$	8	0	0	0	0	0	8	0	0	0	$\mathrm{M}_1^+ \oplus \mathrm{M}_2^+ \oplus \mathrm{M}_3^+ \oplus \mathrm{M}_4^+ \oplus 2\mathrm{M}_5^-$
$\{\frac{3}{2}, \frac{1}{2}, 1\}^d$	16	0	0	0	0	0	0	0	0	0	$M_1^+ \oplus M_1^- \oplus M_2^+ \oplus M_2^- \oplus M_3^+ \oplus M_3^-$
2 2											$\oplus M_4^+ \oplus M_4^- \oplus 2M_5^+ \oplus 2M_5^-$
			a a	$\mathbf{\Omega}^{\prime}$			$(0) (\bar{1})$	$\left[0, 0 \right]$	$(0, \bar{1})$	$\left(0\right)$	$(\bar{1} \ \bar{1} \ 0)$

 ${}^{a} \frac{a}{2\pi} \mathbf{G}^{'} \text{s are } (0,0,0), (\bar{1},0,0), (0,\bar{1},0), (\bar{1},\bar{1},0).$ ${}^{b} \frac{a}{2\pi} \mathbf{G}^{'} \text{s are } (0,0,1), (\bar{1},0,1), (0,\bar{1},1), (\bar{1},\bar{1},1), (0,0,\bar{1}), (\bar{1},0,\bar{1}), (0,\bar{1},\bar{1}), (\bar{1},\bar{1},\bar{1}).$ ${}^{c} \frac{a}{2\pi} \mathbf{G}^{'} \text{s are } (1,0,0), (\bar{2},0,0), (1,\bar{1},0), (\bar{2},\bar{1},0), (0,1,0), (0,\bar{2},0), (\bar{1},1,0), (\bar{1},\bar{2},0).$ ${}^{d} \frac{a}{2\pi} \mathbf{G}^{'} \text{s are } (1,0,1), (\bar{2},0,1), (1,\bar{1},1), (\bar{2},\bar{1},1), (0,1,1), (0,\bar{2},1), (\bar{1},1,\bar{1}), (\bar{1},\bar{2},\bar{1}).$ $(\bar{1},1,1), (\bar{1},\bar{2},1), (1,0,\bar{1}), (\bar{2},0,\bar{1}), (1,\bar{1},\bar{1}), (\bar{2},\bar{1},\bar{1}), (0,1,\bar{1}), (0,\bar{2},\bar{1}), (\bar{1},1,\bar{1}), (\bar{1},\bar{2},\bar{1}).$

Table S21: Equivalence representations of sets of plane waves $e^{i(\mathbf{k}_{R}+\mathbf{G})\cdot\mathbf{r}}$ for the group of the wavevector at an R point $[\mathbf{k}_{R}=\frac{2\pi}{a}(\frac{1}{2},\frac{1}{2},\frac{1}{2})]$ of the space group #221, which transforms isomorphically to $m\bar{3}m$ (O_{h}). Plane waves are sorted by $|\mathbf{k}_{R}+\mathbf{G}|$ and labeled by $\frac{a}{2\pi}\{\mathbf{k}_{R}+\mathbf{G}\}$

$rac{a}{2\pi}\{\mathbf{k}_{\mathrm{R}}{+}\mathbf{G}\}$	1	2	2'	3	4	1	m	m'	3	4	Irreducible representations
$\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}^a$	8	0	0	2	0	0	0	4	0	0	$R_1^+ \oplus R_2^- \oplus R_4^- \oplus R_5^+$
$\{\frac{\tilde{3}}{2}, \frac{\tilde{1}}{2}, \frac{\tilde{1}}{2}\}^b$	24	0	0	0	0	0	0	4	0	0	$\mathbf{R}_1^+ \oplus \mathbf{R}_2^- \oplus \mathbf{R}_3^+ \oplus \mathbf{R}_3^- \oplus \mathbf{R}_4^+ \oplus 2\mathbf{R}_4^- \oplus 2\mathbf{R}_5^+ \oplus \mathbf{R}_5^-$
$\{rac{ar{3}}{2},rac{ar{3}}{2},rac{ar{1}}{2}\}^c$	24	0	0	0	0	0	0	4	0	0	$\mathbf{R}_1^+ \oplus \mathbf{R}_2^- \oplus \mathbf{R}_3^+ \oplus \mathbf{R}_3^- \oplus \mathbf{R}_4^+ \oplus 2\mathbf{R}_4^- \oplus 2\mathbf{R}_5^+ \oplus \mathbf{R}_5^-$
$\{\frac{\tilde{3}}{2}, \frac{\tilde{3}}{2}, \frac{\tilde{3}}{2}\}^d$	8	0	0	2	0	0	0	4	0	0	$\mathrm{R}_1^+\oplus\mathrm{R}_2^-\oplus\mathrm{R}_4^-\oplus\mathrm{R}_5^+$
$\{ frac{5}{2}, frac{1}{2}, frac{1}{2}\}^e$	24	0	0	0	0	0	0	4	0	0	$\mathbf{R}_1^+ \oplus \mathbf{R}_2^- \oplus \mathbf{R}_3^+ \oplus \mathbf{R}_3^- \oplus \mathbf{R}_4^+ \oplus 2\mathbf{R}_4^- \oplus 2\mathbf{R}_5^+ \oplus \mathbf{R}_5^-$
$\{\frac{5}{2}, \frac{3}{2}, \frac{1}{2}\}^f$	48	0	0	0	0	0	0	0	0	0	$R_1^+ \oplus R_1^- \oplus R_2^+ \oplus R_2^- \oplus 2R_3^+ \oplus 2R_3^- \oplus 3R_4^+$
- 2 2 2 -											$\oplus 3\mathrm{R}_4^- \oplus 3\mathrm{R}_5^+ \oplus 3\mathrm{R}_5^-$
$a \frac{a}{2\pi} \mathbf{G}^{\prime}$	s are	(0,	(0, 0)	,(0,	, 1, (), ([0, 0,]	$\bar{1}$), (0	$, \bar{1},$	$\bar{1}), ($	$(\bar{1},0,0), (\bar{1},\bar{1},0), (\bar{1},0,\bar{1}), (\bar{1},\bar{1},\bar{1}).$
							b	$\frac{a}{2\pi}\mathbf{C}$	i's a	are	
$(1, 0, 0), (1, \bar{1},$	0), (1	, 0,	$\bar{1}), (1$	$1, \overline{1},$	$\bar{1}),$	$(\overline{2},$	(0, 0)	$(\bar{2}, \bar{1})$	(, 0)	$, (\bar{2},$	$(0,\bar{1}), (\bar{2},\bar{1},\bar{1}), (0,1,0), (\bar{1},1,0), (0,1,\bar{1}), (\bar{1},1,\bar{1}), ($
$(0, \bar{2}, 0), (\bar{1}, \bar{2}, \bar{2})$	0), (0	$, \overline{2},$	$\bar{1}), (\bar{1})$	$\overline{1}, \overline{2},$	$\overline{1}),$	(0,	(0, 1)	$(0, \bar{1})$	(,1)	$, (\bar{1}, $	$(0,1), (\bar{1},\bar{1},1), (0,0,\bar{2}), (0,\bar{1},\bar{2}), (\bar{1},0,\bar{2}), (\bar{1},\bar{1},\bar{2}).$
							С	$\frac{a}{2\pi}\mathbf{C}$	i's a	are	
$(1, 1, 0), (1, \overline{2},$	0), (1	, 1,	$\bar{1}), (\bar{1})$	$1, \bar{2},$	$\overline{1}),$	$(\overline{2},$	(1, 0)	$(\bar{\bar{2}}, \bar{\bar{2}})$	(2, 0)	$, (\bar{2},$	$(1, \overline{1}), (\overline{2}, \overline{2}, \overline{1}), (1, 0, 1), (1, 0, \overline{2}), (1, \overline{1}, 1), (1, \overline{1}, \overline{2}),$
$(\bar{2},0,1), (\bar{2},0,1)$	$\bar{2}), (\bar{2}$	$, \overline{1},$	1), (2	$\overline{2}, \overline{1},$	$\bar{2}),$	(0,	(1, 1)	$(0, \bar{2})$	(2, 1)	$, (\bar{1}, $	$(1, 1), (\bar{1}, \bar{2}, 1), (0, 1, \bar{2}), (0, \bar{2}, \bar{2}), (\bar{1}, 1, \bar{2}), (\bar{1}, \bar{2}, \bar{2}).$
$\frac{d}{2\pi}\mathbf{G}^{\prime}$	s are	(1,	1, 1)	,(1)	$\bar{2}, \bar{2}$	1), ([1, 1,]	$\bar{2}), (1$	$1, \overline{2},$	$\bar{2}), ($	$(\bar{2}, 1, 1), (\bar{2}, \bar{2}, 1), (\bar{2}, 1, \bar{2}), (\bar{2}, \bar{2}, \bar{2}).$
27							e	$\frac{a}{2\pi}\mathbf{C}$	i's a	are	
$(2, 0, 0), (2, \bar{1}, \bar{1})$	0), (2	, 0,	$\bar{1}), (2$	$2, \bar{1},$	ī),	$(\bar{3},$	(0, 0)	$(\bar{\bar{3}}, \bar{1})$	(, 0)	$, (\bar{3},$	$(0,\bar{1}), (\bar{3},\bar{1},\bar{1}), (0,2,0), (\bar{1},2,0), (0,2,\bar{1}), (\bar{1},2,\bar{1}), ($
$(0, \bar{3}, 0), (\bar{1}, \bar{3},$	0), (0	$, \bar{3},$	$\bar{1}), (\bar{1})$	$\overline{1}, \overline{3},$	$\bar{1}),$	(0,	(0, 2)	$(0, \bar{1})$	(,2)	$, (\bar{1}, $	$(0,2), (\bar{1},\bar{1},2), (0,0,\bar{3}), (0,\bar{1},\bar{3}), (\bar{1},0,\bar{3}), (\bar{1},\bar{1},\bar{3}).$
							f	$\frac{a}{2\pi}\mathbf{c}$	d's a	are	
$(2, 1, 0), (2, \overline{2}, $	0), (2	, 1,	$\bar{1}), (2$	$2, \bar{2},$	$\overline{1}),$	$(\bar{3},$	(1, 0)	$(\bar{\bar{3}}, \bar{2})$	(2, 0)	$, (\bar{3}, $	$(1, \overline{1}), (\overline{3}, \overline{2}, \overline{1}), (2, 0, 1), (2, 0, \overline{2}), (2, \overline{1}, 1), (2, \overline{1}, \overline{2}),$
$(\bar{3}, 0, 1), (\bar{3}, 0, 1)$	$\bar{2}), (\bar{3}$	$, \overline{1},$	1), (3	$\bar{3}, \bar{1},$	$\bar{2}),$	(1,	(2, 0)	$(\bar{2},2)$	(2, 0)	, (1,	$(2,\bar{1}), (\bar{2},2,\bar{1}), (1,\bar{3},0), (\bar{2},\bar{3},0), (1,\bar{3},\bar{1}), (\bar{2},\bar{3},\bar{1}), (\bar{2},\bar{3},\bar{1}$
(0, 2, 1), (0, 2, 1)	$\bar{2}), (\bar{1}$, 2,	1), (1)	$\bar{1}, 2,$	$\bar{2}),$	(0,	$(\bar{3}, 1)$	$(0, \bar{3})$	$(\bar{2},\bar{2})$	$, (\bar{1}, $	$(\bar{3},1), (\bar{1},\bar{3},\bar{2}), (0,1,2), (0,\bar{2},2), (\bar{1},1,2), (\bar{1},\bar{2},2), ($
$(0, 1, \bar{3}), (0, \bar{2}, \bar{3})$	$\bar{3}), (\bar{1}$, 1,	$\bar{3}), (\bar{1})$	$\overline{1}, \overline{2},$	$\bar{3}),$	(1,	(0, 2)	$(\bar{2}, 0)$	(,2)	, (1,	$\bar{1}, 2), (\bar{2}, \bar{1}, 2), (1, 0, \bar{3}), (\bar{2}, 0, \bar{3}), (1, \bar{1}, \bar{3}), (\bar{2}, \bar{1}, \bar{3}).$

References

- (S1) Aroyo, M. I.; Kirov, A.; Capillas, C.; Perez-Mato, J. M.; Wondratschek, H. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. Sec. A 2006, 62, 115–128.
- (S2) Elcoro, L.; Bradlyn, B.; Wang, Z.; Vergniory, M. G.; Cano, J.; Felser, C.; Bernevig, B. A.; Orobengoa, D.; de la Flor, G.; Aroyo, M. I. Double crystallographic groups and their representations on the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2017, 50, 1457–1477.
- (S3) Bouckaert, L. P.; Smoluchowski, R.; Wigner, E. Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals. *Phys. Rev.* 1936, 50, 58–67.
- (S4) Altmann, S. L.; Herzig, P. Point-Group Theory Tables, 2nd ed.; University of Vienna: Vienna, 2011.
- (S5) Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A. Group Theory; Springer-Verlag: Berlin, Heidelberg, 2008.