
SUPPLEMENTARY INFORMATION

Sliding of Drops on Mesoporous Thin Films

Rocío Gimenez,¹ Magalí Mercuri,¹ Claudio L. A. Berli^{2,*} and Martín G. Bellino^{1,*}

 Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires, Argentina

2- INTEC (Universidad Nacional del Litoral-CONICET) Predio CCT CONICET Santa Fe, RN 168, 3000 Santa Fe, Argentina.

Figure S1: Nanoarchitecture of the nanoporous thin films used in this study. Typical pore size distribution and neck size distribution obtained by water adsorption-desorption isotherms at 298 K (see inset). Adsorption isotherm obtained from a non-nanoporous film is shown for comparative propose.

Adsorption/desorption isotherms were determined by environmental ellipsometric porosimetry (EEP) using a SOPRA GES5A apparatus, equipped with microspot optics, according to the protocols developed by Boissiere et. al. *Langmuir* 21, 12362-12371 (2005). Film thickness and the real component of the refractive index were obtained from the ellipsometric parameters $\psi(\lambda)$ and $\Delta(\lambda)$; the film refractive index was described according to a modified Cauchy equation. Pore size distributions were obtained from the analysis of the refractive index variation, using the WinElli 2 software which transforms the variation of n with P/P^o into filled pore volume by using a three-medium BEMA treatment. Pore and neck size distributions are derived according to a Kelvin model.

	Pore Size (nm)	Neck Size (nm)	Thickness (nm)	Porosity (%)
N-MTF			165 ± 1	3 ± 0.5
MTF	8 .5 ± 1	5.5 ± 0.5	170 ± 1	47 ± 1

Table S1: Structural data obtained from ellipsoporosimetry of the films.

Table S2. Contact angle measurements for water and oil (Pfeiffer Vacuum GmbH) drops on the surfaces.

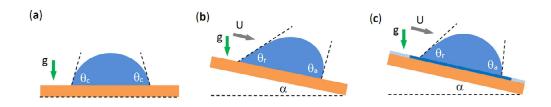

	Contact Angle (°) Water	Contact Angle (°) Oil
SSO	32 ± 1	21 ± 1
N-MTF	30 ± 1	22 ± 1
MTF	31 ± 2	20 ± 1

Table S3. Droplet base radius when water or oil (Pfeiffer Vacuum GmbH) are placed on the three surfaces.

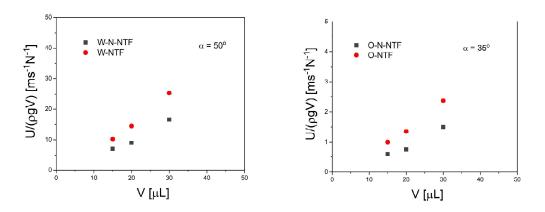

Water	Drop radius (mm) Vol = 15 μl	Drop radius (mm) Vol = 20 μl	Drop radius (mm) Vol = 30 µl	Drop radius (mm) Vol = 40 μl
SSO	3.1 ± 0.2	3.4 ± 0.2	3.7 ± 0.2	4.4 ± 0.2
N-MTF	2.9 ± 0.2	3.5 ± 0.2	3.9 ± 0.2	4.2 ± 0.2
MTF	3.0 ± 0.2	3.3 ± 0.2	3.8 ± 0.2	4.3 ± 0.2
Oil	Drop radius (mm) Vol = 15 µl	Drop radius (mm) Vol = 20 µl	Drop radius (mm) Vol = 30 µl	Drop radius (mm) Vol = 40 μl
SSO	3.6 ± 0.2	4.1 ± 0.2	4.8 ± 0.2	5.3 ± 0.2
N-MTF	3.8 ± 0.2	4.4 ± 0.2	4.7 ± 0.2	5.1 ± 0.2

Table S4. Physicochemical properties of fluids at 25 °C.

Fluid	Density	Viscosity	Surface tension	Capillary length
	ρ [kg/m ³]	μ [Pa s]	γ [N/m]	λ [m]
Water	998	0.0009	0.073	0.0027
Oil (Pfeiffer)	870	0.0827	~0.025	~0.0017

Figure S2. Schematic representation of droplets, where the contact angles illustrate the different pinning of surfaces. (a) Sessile droplet on a horizontal surface. (b) Sessile droplet on an inclined N-MTF surface. (c) Sessile droplet on an inclined MTF surface.

Figure S3. Droplet mobility (defined as the droplet velocity relative to the driving force) on different surfaces, as a function of the droplet volume, for water (left panel) and oil (right panel). The droplet velocity corresponds to that in Figure 5, where the surfaces were tilted 50° and 35° for the water and oil drops, respectively. The droplet mobility increases with the droplet volume, showing that the relationship U vs V in nonlinear for these systems.