Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Electronic supplementary information

Photostable 3D heterojunction photoanode of ZnO nanosheets coated onto TiO₂

nanowire arrays for photoelectrochemical solar hydrogen generation

Hongsong Han,^a Wenzhong Wang,^{*a} Lizhen Yao,^a Chenchun Hao,^b Yujie Liang,^a

Junli Fu^a and Pengbo Zeng^a

^a School of Science, Minzu University of China, Beijing, 100081, China

^b State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

*Corresponding author: <u>wzhwang@muc.edu.cn</u>

Fig. S1 (a) and (b) Medium- and high-magnification SEM images of 3D ZnO/TiO₂ 2D/1D NSs-NWAs architectures fabricated in 0.1 M zinc nitrate aqueous solution, showing that some tops of 1D TiO₂ NWAs are not covered by hierarchical 2D ZnO NSs. (c) and (d) Medium- and high-magnification SEM images of ZnO/TiO₂ NSs-NWAs architectures fabricated in 0.15 M zinc nitrate aqueous solution, showing that some tops of 1D TiO₂ NWAs are completely covered by hierarchical 3D architectures assembled by 2D ZnO NSs.

Fig. S2 High-resolution core-level XPS spectra for (a) Ti 2p of pure TiO_2 and (b) Zn

2p of pure ZnO.

0.1 and ZnO/TiO₂ NS-NWAs-0.15 samples. (b) Band gap energies of pure TiO₂ NWAs, ZnO/TiO₂ NS-NWAs-0.1 and ZnO/TiO₂ NS-NWAs-0.15 samples. (c) UV-vis absorption spectrum of pure 2D ZnO NSs. (d) Band gap energy of pure 2D ZnO NSs.