Supporting Information

MnO₂-Graphene-Oxide-Scroll-TiO₂ Composite Catalyst for Low-Temperature NH₃-SCR of NO with Good Steam and SO₂ Resistance Obtained by Low-Temperature Carbon-Coating and Selective Atomic Layer Deposition

Liwei Sun,^{a,b} Kai Li,^{a,b} Zeshu Zhang,^{a,b} Xuefeng Hu,^a Heyuan Tian,^{a,b} Yibo Zhang*^a and Xiangguang Yang*^{a,b}

^a State Key Laboratory of Rare Earth Resource Utilization, Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China

^b University of Science and Technology of China, Hefei 230026, China

1. Computational Details

The calculations were carried out using density functional theory (DFT) with the Perdew-Burke-Ernzerbof (PBE) form of generalized gradient approximation functional (GGA).¹ The Vienna ab-initio simulation package (VASP) was employed.²⁻⁵ The plane wave energy cutoff was set as 400 eV. The Fermi scheme was employed for electron occupancy with an energy smearing of 0.1 eV. The first Brillouin zone was sampled in the Monkhorst–Pack grid.⁶ The $3\times3\times1$ k-point mesh for the surface calculation. The energy (converged to 1.0 $\times10^{-6}$ eV/atom) and force (converged to 0.01eV/Å) were set as the convergence criterion for geometry optimization. The spin polarization was considered in all calculation. To accurately describe the van der Waals (vdW) interaction involved in graphene, the semiempirical DFT-D2 force-field approach was employed in this study.⁷

The (110) surface of MnO_2 is obtained by cutting the MnO_2 bulk along {110} directions. In the structural optimization calculation for $MnO_2(110)$, the atoms of the bottom layer are fixed, while the positions of the other atoms were allowed to relax. However, for graphene, all the atoms were allowed to relax. A vacuum layer as large as 15 Å was used along the C direction normal to the surfaces to avoid periodic interactions.

2. Additional Figures

Figure S1. Morphology characterization: SEM image of MnO₂-GOS-TiO₂.

Figure S2. Structural characterization, XRD pattern of MnO₂, MnO₂-TiO₂, MnO₂-GOS and MnO₂-GOS-TiO₂.

The diffraction peaks located at 13 $^{\circ}$ could be assigned to the (110) characteristic diffraction of the MnO₂. The surface spacing of this crystal plane was consistent with that measured by HRTEM image in Figure 2d.

Figure S3. The temperature-programmed oxidation (TPO) of GO in reaction atmosphere.

Figure S4. Catalyst performance: (a) NH₃ conversion, (b) N₂O selectivity and (c) N₂ selectivity of MnO₂, MnO₂-TiO₂, MnO₂-GOS and MnO₂-GOS-TiO₂ (content of TiO₂ in MnO₂-TiO₂ was 0.2 %, content of C in MnO₂-GOS was 2 %, TiO₂ and C content of MnO₂-GOS-TiO₂ were the same as the first two) in the presence of steam.

Figure S5. Relationship between catalyst performance and content of GO in MnO₂-GOS.

Figure S6. Relationship between catalyst performance and content of TiO₂ in MnO₂-GOS-TiO₂.

Figure S7. Catalyst performance:(a) NO conversion, (b) NH₃ conversion and (c) N₂O selectivity of newly prepared and used MnO₂-GOS-TiO₂ catalyst in the presence of steam.

	Rate of reaction (10 ⁻⁷ mol g ⁻¹ s ⁻¹)				TOF ^c (10 ⁻³ s ⁻¹)		
Catalyst (D) ^b	Overall	Complete reduction (N ₂)	Partial reduction (N ₂ O)	Overall	Complete reduction (N ₂)		
MnO ₂ (1.52)	5.6	5.2	0.4	3.2	3.0		
MnO ₂ -TiO ₂ (0.37)	5.1	4.8	0.3	12	11.3		
MnO ₂ -GOS (0.69)	5.6	5.2	0.4	7.1	6.6		
MnO ₂ -GOS-MnO ₂ (0.58)	5.5	5.3	0.2	8.2	7.9		

 a 500 ppm NO reacted after 10 mins at 150 $^\circ \rm C$ in the presence of the steam and SO_2.

^b Dispersion values in percent were given in parentheses.

^c Turnover frequencies with respect to the surface atoms.

Figure S8. XPS spectra for (a) Mn $2p_{3/2}$ and (b) O $2p_{3/2}$ for MnO₂, MnO₂-TiO₂, MnO₂-GOS and MnO₂-GOS-TiO₂.

Entry	Procedure	Gas Fluid	Catalyst
•			

			MnO ₂	MnO ₂ -TiO ₂	MnO ₂ -GOS	MnO ₂ -GOS-TiO ₂
1	He-280°C -30mins-30°C	Не	Figure S9a	Figure S9b	Figure S9c	Figure 7a
	NO+O ₂ -30mins	NO+O ₂				
	He-30mins	Не				
	He-warming up and recording					
	50°C, 100°C, 150°C, 200°C, 250°C					
2	He-280°C -30mins-30°C	Не	Figure S9d	Figure S9e	Figure S9f	Figure 7b
	NH ₃ -30mins	NH ₃				
	He-30mins	Не				
	He-warming up and recording					
	50°C, 100°C, 150°C, 200°C, 250°C					
3	He-280°C -30mins-50°C	He	Figure S9g	Figure S9h	Figure S9i	Figure 7c
	NH ₃ -30mins	NH ₃				
	He-30mins	He				
	NO+O ₂ -50°C -recording	NO+O ₂				
	0min, 0.5mins, 1.5mins, 5mins, 8mins					
4	He-280°C -30mins-150°C	He	Figure S9j	Figure S9k	Figure S91	Figure 7d
	NO+O ₂ -30mins	NO+O ₂				
	He-30mins	He				
	NH3-150°C -recording	NH ₃				
	0min, 0.5mins, 1.5mins, 5mins, 8mins					
5	He-280°C -30mins-30°C	He	Figure S9m	Figure S9n	Figure S9o	Figure 7e
	NO+O ₂ +NH ₃ -30mins	NO+O ₂ +NH ₃				
	NO+O ₂ +NH ₃ -warming up and recording					
	50°C, 100°C, 150°C, 200°C, 250°C					

Table S2. DRIFT study on mechanism of NH₃-SCR

Figure S9. DRIFT study on NH₃-SCR mechanism of MnO₂, MnO₂-TiO₂ and MnO2-GOS-TiO₂.

3. Reference

[1] J. P. Perdew, K. Burke, M. Ernzerhof Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

[2] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set, Comp. Mater. Sci. 6 (1996) 15-50.

[3] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558-561.

[4] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251-14269.

[5] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

[6] H. J. Monkhorst, J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

[7] G. Henkelman, B. P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901-9904.