Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

One-pot fabrication of double Z-scheme CeCO₃OH/g-C₃N₄/CeO₂ photocatalyst for nitrogen fixation under solar irradiation

Xiangwen Feng^a, Huan Chen^{a*}, Fang Jiang^{a*}, Xin Wang^b

^a Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources

Reuse, School of Environmental and Biological Engineering, Nanjing University of

Science and Technology, Nanjing 210094, China.

^b Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of

Science and Technology, Ministry of Education, Nanjing 210094, PR China.

*Corresponding author: E-mail: hchen404@njust.edu.cn, fjiang@njust.edu.cn

Tel: +86-25-84303209; Fax: +86-25-84315352

Element content (wt. %)	CN	2Ce-CN
Ce	0	13.2
С	34.8	26.1
Ν	61.7	44.0
0	4.1	13.68
Н	2.0	1.8
C/N	0.56	0.59

Table S1 The content of elements in CN and 2Ce-CN.

Table S2 The binding energy summary of XPS.

Peak –		Binding Energy (eV)			
		CN	CeO ₂	CeCO ₃ OH	2Ce-CN
	V	-	882.3	-	-
	v ₀	-	-	882.1	882.0
	v_1	-	884.7	885.8	885.6
	V2	-	888.8	-	-
Ca	V3	-	898.1	-	897.8↓
Ce	u	-	900.8	-	-
	u ₀	-	-	900.2	900.4个
	u_1	-	903.3	904.2	904.0
	u ₂	-	907.3	-	-
	u ₃	-	916.6	-	916.1↓
0	Ce-O	-	529.4	-	529.0↓
	O_2^- / O^-	-	531.2	-	-
	CO ₃ ²⁻	-	-	531.6	531.6
	H_2O	-	-	532.2	532.2
	CO ₃ ²⁻	-	-	289.9	289.9
С	N-C=N	288.4	-	-	288.4
	C _{Calibration}	284.8	-	284.8	284.8
N	C-N=C	398.8	-	-	398.6↓
	N-(C) ₃	399.7	-	-	399.5↓
	C-N-H	400.9	-	-	400.9

Samples	CN	CeCO ₃ OH	CeO ₂	CeO ₂ -CN	2Ce-CN
BET Surface Area (m ² /g)	7.24	17.43	9.34	14.74	61.14
Pore Volume (cm ³ /g)	0.056	0.017	0.047	0.086	0.208

Table S3 BET and pore volume information of CN, CeCO₃OH, CeO₂, CeO₂-CN, and 2Ce-CN.

Sample	CN	CeO ₂ -CN	2Ce-CN
τ_1 (ns)	1.59	1.28	3.02
Rel (%)	100	41.11	47.48
τ_2 (ns)	-	4.74	7.54
Rel (%)	-	47.25	28.65
τ_3 (ns)	-	25.61	37.67
Rel (%)	-	11.63	23.87
τ (ns)	1.59	5.73	12.55
χ^2	1.071	1.29	1.079

Table S4 Kinetic analysis of emission decay for CN, CeO₂-CN, and 2Ce-CN.

Fig. S1 Photocatalytic nitrogen fixation reaction device

Fig. S2 XRD diffraction patterns of CeO₂-CN and 2Ce-CN prepared in different temperature.

Fig. S3 SEM image of 2Ce-CN.

Fig. S4 FT-IR spectra of 2Ce-CN before and after reaction.

Fig. S5 XRD patterns of 2Ce-CN before and after being used.

Fig. S6 The EPR spectra of DMPO-•OH in the presence of CeO₂-CN.

Fig. S7 Proposed mechanism for charge transfer path over CeO₂-CN: traditional model (a) and Z-scheme model (b).

The possible charge transfer process over CeO₂-CN is proposed in Fig S3. In the hypothetical process shown in Fig. S7a, under light irradiation, the holes on the VB of CeO₂ would transfer to that of CN, while the electrons on the CB of CN would transfer towards that of CeO₂. However, the oxidation levels of CN (1.36) were lower than the standard redox potential of \cdot OH/OH⁻ (1.99 eV). Therefore, the accumulated holes in the VB of CN cannot react with OH⁻ to form \cdot OH. This is not consistent with the experimental results that \cdot OH was generated in this photocatalytic process. As shown in Fig. S6, EPR spin-trap tests over CeO₂-CN with DMPO in water gave rise to the characteristic peaks of the DMPO-hydroxyl radical (\cdot OH) moiety, which suggested that \cdot OH was generated in the photocatalytic process.

Another mechanism is therefore proposed. In the staggered band heterostructure of CeO_2 -CN shown in Fig. S7b, electrons generated in CeO_2 transferred to the VB of CN as a result of the inner electric field, and subsequently recombined with holes. Thus, nitrogen reduction occurred at the CB of CN, meanwhile, \cdot OH formed at the VB of CeO_2 . This constituted a Z-scheme heterojunction model.

Fig. S8 EPR spectra of CN and 2Ce-CN.