Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Cu based mix metal oxides for efficient photothermal catalysis of water gas shift reaction

Fuli Liu,^a Lizhu Song,^a Shuxin Ouyang,^{a,c} Hua Xu^{a,b*}

^a School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China

^b School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan

430205, China

^c College of Chemistry, Central China Normal University, Wuhan 430079, China

* Author to whom correspondence should be addressed.

Electronic mail: XU.Hua@wit.edu.cn

		H ₂ Yield		
Samples	Cu(NO ₃) ₂ ·3H ₂ O	Zn(NO ₃) ₂ ·6H ₂ O	Al(NO ₃) ₃ ·9H ₂ O	(mmol)
CuAl	2.70	0	2.70	4.19
CuZnAl	2.70	2.70	2.70	5.46
CuZn ₂ Al	2.70	5.40	2.70	6.68
CuZn ₃ Al	2.70	8.10	2.70	7.80
CuZn ₄ Al	2.70	10.80	2.70	6.42
CuZn ₅ Al	2.70	13.50	2.70	4.64
CuZn ₃ Al _{0.25}	2.70	8.10	0.68	4.97
CuZn ₃ Al _{0.5}	2.70	8.10	1.35	5.19
CuZn ₃ Al ₂	2.70	8.10	5.40	3.69
CuZn ₃ Al ₄	2.70	8.10	10.80	0.23
$CuZn_{0.8}Al_{0.2}$	2.70	2.16	0.54	3.32
CuZn _{0.6} Al _{0.4}	2.70	1.62	1.08	8.00
CuZn _{0.5} Al _{0.5}	2.70	1.35	1.35	4.15
CuZn _{0.4} Al _{0.6}	2.70	1.08	1.62	3.74
$CuZn_{0.2}Al_{0.8}$	2.70	0.54	2.16	3.52
CuZn	2.70	2.70	0	9.46

 Table S1 Molar mass of the metal precursors used for the prepared catalysts.

Fig. S1 XRD patterns of the Cu-based catalysts after WGS photothermal reaction. a: CuAl, b: $CuZn_{0.6}Al_{0.4}$, and c: CuZn.

Fig. S2 Curves of H_2 evolution as a function of CuAl_{0.5} catalyst prepared via calcination at various temperature (200-950 °C).

Fig. S3 XRD patterns of $CuAl_{0.5}$ catalyst prepared via calcination at various temperatures, before (a) and after WGS reaction (b).

Fig. S4 Curves of H_2 evolution as a function of CuAl catalyst prepared with a various molar ratio between Cu and Al.

Fig. S5 Curves of H_2 evolution as a function of CuAl catalyst pretreated via either photo-assisted reduction or thermal-assisted reduction.

Fig. S6 Stability test of WGS reaction over the CuZn catalyst (30 min for each cycle).

Fig. S7 Survey XPS spectra of CuAl, CuZn_{0.6}Al_{0.4} and CuZn catalysts.

Fig. S8 Zn 2p XPS spectra of CuZn (a) and CuZn_{0.6}Al_{0.4} (b) catalysts before and after WGS reaction. (B.R.: before reaction, A.R.: after reaction.)

Table S2 Binding energy of Zn 2p XPS of CuZn and CuZn_{0.6}Al_{0.4} catalysts before and after WGS reaction.

	Zn 2p _{3/2}	Zn $2p_{3/2}$	Zn $2p_{1/2}$	Zn $2p_{1/2}$
	B.R.	A.R.	B.R.	A.R.
	(eV)	(eV)	(eV)	(eV)
CuZn _{0.6} Al _{0.4}	1022.3	1022.3	1045.4	1045.4
CuZn	1022.1	1022.0	1045.2	1045.1

Fig. S9 Nitrogen adsorption-desorption isotherms and pore-size distribution curves (inset) of CuAl, $CuZn_{0.6}Al_{0.4}$ and CuZn catalysts.