Electronic Supporting Information:

Iron-based nanoparticles embedded in graphitic layer of carbon architectures as stable heterogeneous Friedel-Crafts acylation catalysts

Hao Zhang^a, Xiaojing Song^{ab}, Dianwen Hu^a, Wenxiang Zhang^a, and Mingjun Jia^{*a}

^aKey Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun, 130012, China
^bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China

* Corresponding author: Tel: (+86)431-85155390; Fax: (+86)431-85168420.Email address: jiamj@jlu.edu.cn (M. Jia)

Fig. S1 TG-MS profiles of the Fe-TPA under inert atmosphere.

Fig. S2 XRD pattern of Fe@NC-400.

Fig. S3 FT-IR spectra of the Fe@NC-*T* catalysts.

Fig. S4 Nitrogen isothermal adsorption-desorption curves for Fe@C-800. Inset: pore size distribution profile based on the DFT model.

Fig. S5 (a-c) SEM and (d-g) TEM/HRTEM images of Fe@NC-800.

Fig. S6 (a) SEM and (b) TEM images of Fe@C-800. (c) Elemental mapping revealing

the elemental distribution.

Fig. S7 XPS survey spectra of Fe@NC-800.

Fig. S8 XPS survey spectra of (a) Fe@C-800, (b) Fe 2p, (c) C 1s and (d) O 1s of Fe@C-800.

Fig. S9 Friedel-Crafts acylation property over (◆) Fe@NC-400 and the leaching test
(●). Reaction conditions: 130 °C reaction temperature; 20 mmol m-xylene, 10 mmol benzoyl chloride, and 10 mmol dodecane; 50 mg catalyst.

Fig. S10 (a) XRD diffraction patterns of fresh and used Fe@NC-800 catalysts after five consecutive cycles; and XPS survey spectra of (b) Fe 2p, (c) C 1s, (d) O 1s, (e) N 1s and (f) Cl 2p of the used Fe@NC-800 catalyst.

	$S_{BET}^{a}(m^{2} g^{-1})$	$S_{micro}{}^{b} (m^2 g^{-1})$	$S_{meso}^{c} (m^2 g^{-1})$	$\mathrm{V}_{\mathrm{pore}}^{d}(\mathrm{cm}^{3}\mathrm{g}^{\text{-}1})$
Fe@NC-600	232	147	85	0.24
Fe@NC-800	174	51	123	0.35
Fe@NC-1000	119	39	80	0.26
Fe@C-800	180	75	105	0.32

Table S1 Summary of the porous properties of Fe@NC-*T* and Fe@C-800 catalysts.

^{*a*} Calculated via the BET method.

^b Calculated via the t-plot method.

c
 S_{meso} = S_{BET}-S_{micro}.

^{*d*} Calculated based on the N_2 adsorption at $p/p_0 = 0.99$.

Samples	Element analysis					
	C (wt %)	H (wt %)	N (wt %)	O (wt %)	Fe (wt %)	
Fe-TPA	39.14	3.24	-	40.76	16.86	
Fe-DABCO-TPA	53.59	5.25	7.00	27.33	6.83	
Fe@C-800	27.57	0.30	-	12.51	59.62	
Fe@NC-800	50.92	0.43	0.51	2.74	45.40	
Fe@NC-800*					44.74	

Table S2 The element compositions of various samples determined from a

PerkinElmer 2400 CHN elemental analyzer and ICP-AES.

* The used Fe@NC-800 catalyst after FCA reactions.

Samples	1				
	C 1s	O 1s	Fe 2p	N 1s	Cl 2p
Fe@C-800	94.75	4.81	0.44	-	-
Fe@NC-800	84.56	10.40	1.08	3.97	-
Fe@NC-800*	85.06	5.55	1.27	2.68	5.44

Table S3 The elemental contents on the surface of Fe@NC-800 obtained from XPS.

* The used Fe@NC-800 catalyst after FCA reactions.