Supplementary Information

Zeolite Acidity Strongly Influences Hydrogen Peroxide Activation and Oxygenate Selectivity in the Partial Oxidation of Methane over M,Fe-MFI (M: Ga, AI, B) Zeolites

Meysam Shahami and Daniel F. Shantz^{*}

Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, United States.

*To whom correspondence should be addressed: dshantz@tulane.edu

Contents

Figures:

Figure S1. Left) Calibration curves of methanol/formic acid versus 0.25 vol% acetonitrile based on the ¹H-NMR spectrum. (*Note: Moles number was calculated based on the known amounts of methanol/formic acid inside the 10 mL of aqueous solution.*) Right) Calibration of carbon dioxide versus methane in gas chromatography using thermal conductivity as the detector.

Figure S2. ¹H-NMR spectrum of organic oxygenates from direct oxidation of methane with H₂O₂ over B,Fe-MFI(200) (blue) and Ga,Fe-MFI(100) (red) after 30 min.

Figure S3. Ultraviolet-visible spectra of added certain amounts of hydrogen peroxide into 3 mL of V_2O_5 solution (0.002 M) (*Green spectrum: 20 µL of 0.5 M H*₂ O_2 added to vanadium pentoxide solution which shows a red-brownish color).

Figure S4. Powder X-ray diffraction patterns of calcined Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI zeolites in the range of $5^{\circ} \le 2\theta \le 50^{\circ}$.

Figure S5. Ultraviolet-Visible spectra of calcined Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI zeolites in the range of 194-1000 nm under ambient conditions.

Figure S6. N₂ adsorption-desorption isotherms of outgassed Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI zeolites. ($60 < v (cm^3/g-STP) < 220$)

Figure S7. FE-SEM images of Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI zeolites. The scale bar in all images is 1 μ m.

Figure S8. FT-IR spectra of pyridine adsorbed at different temperatures over M,Fe-MFI(100) zeolites as well as calculated concentration of Brönsted and Lewis acidities at different temperatures.

Figure S9. Hydrogen peroxide consumption (top left), methane conversion (top right), and selectivity profiles (bottom) versus time for a reaction in which Al,Fe-MFI zeolites were used as catalysts. Reaction conditions: CH₄ Pressure: 443 psi, T: 55 °C, Amounts of catalyst 28 mg, Concentration of H₂O₂: 0.5 M, Volume of used H₂O₂: 10 mL, 1500 rpm.

Figure S10. Selectivity profiles versus various catalysts. Conditions are similar for all the reactions: CH₄ Pressure: 443 psi, T: 55 °C, Amounts of catalyst: 28 mg, Concentration of H₂O₂: 0.5 M, Volume of H₂O₂ Solution: 10 mL, 1500 rpm, t: 30 min.

Figure S11. Hydrogen peroxide consumption versus various catalysts. Conditions are similar for all the reactions: CH₄ Pressure: 443 psi, T: 55 °C, Amounts of catalyst: 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of H_2O_2 Solution: 10 mL, 1500 rpm, t: 30 min. (M: Ga, Al, B)

Figure S12. IR spectra of calcined Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI materials under the vacuum (10⁻⁵ Torr) at 500 °C for 30 min in the range of 4000-3000 cm⁻¹. The indicator shows the Kubelka-Munk Function unit (a.u.).

Figure S13. Hydrogen peroxide consumption versus various catalysts. Conditions are similar for all the reactions: CH₄ Pressure: 443 psi, T: 55 °C, Amounts of catalyst: 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of H_2O_2 Solution: 10 mL, 1500 rpm, t: 30 min. (M, Al, PNa, Na)

Figure S14. Methane conversion/total oxygenated products, hydrogen peroxide consumption, and selectivity profiles as a function of partial pressure of methane over Ga,Fe-MFI(50). T: 55 °C, Weight _{Catalyst}: 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of H_2O_2 Solution: 10 mL, 1500 rpm, t: 30 min.

Tables:

Table S1. Physical properties of calcined Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI zeolites. **Table S2.** Theoretical wt%, actual wt%, and percent uptake of heteroatoms for all samples.

Table S3. Catalytic studies of various (Ga/Al/B/Na),Fe-MFI zeolites for oxidation of methane under mild conditions. Conditions are similar for all the reactions: CH₄ Pressure: 443 psi, T: 55 °C,

Weight _{Catalyst}: 28 mg, Concentration of H₂O₂: 0.5 M, Volume of H₂O₂ Solution: 10 mL, 1500 rpm, t: 30 min.

Table S4. Selectivity profile and turnover frequency for all the reactions in which (Ga/Al/B/Na), Fe-MFI zeolites were used. Conditions are similar for all the reactions: CH_4 Pressure: 443 psi, T: 55 °C, Weight _{Catalyst}: 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of H_2O_2 Solution: 10 mL, 1500 rpm, t: 30 min.

Figure S1. Left) Calibration curves of methanol/formic acid versus 0.25 vol% acetonitrile based on the ¹H-NMR spectrum. (*Note: Moles number was calculated based on the known amounts of methanol/formic acid inside the 10 mL of aqueous solution.*) Right) Calibration of carbon dioxide versus methane in gas chromatography using thermal conductivity as the detector.

Figure S2. ¹H-NMR spectrum of organic oxygenates from direct oxidation of methane with H₂O₂ over B,Fe-MFI(200) (blue) and Ga,Fe-MFI(100) (red) after 30 min.

Figure S3. Ultraviolet-visible spectra of added certain amounts of hydrogen peroxide into 3 mL of V_2O_5 solution (0.002 M) (*Green spectrum: 20 µL of 0.5 M H*₂ O_2 added to vanadium pentoxide solution which shows a red-brownish color).

Figure S4. Powder X-ray diffraction patterns of calcined Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI zeolites in the range of $5^{\circ} \le 2\theta \le 50^{\circ}$.

Figure S5. Ultraviolet-Visible spectra of calcined Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI zeolites in the range of 194-1000 nm under ambient conditions.

Figure S6. N₂ adsorption-desorption isotherms of outgassed Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI zeolites. ($60 < v (cm^3/g-STP) < 220$)

Sample Name	V Micropore (cm ³ /g-STP)	V _{Total} (cm ³ /g-STP)	S _{BET} (m ² /g)	V _{Mesopore} (cm ³ /g-STP)
Ga,Fe-MFI(200)	0.1404	0.2023	355	0.0619
Ga,Fe-MFI(150)	0.1344	0.2052	326	0.0708
Ga,Fe-MFI(100)	0.1324	0.1834	327	0.0510
Ga,Fe-MFI(50)	0.1294	0.1817	322	0.0523
Al,Fe-MFI(200)	0.1428	0.2783	352	0.1355
Al,Fe-MFI(150)	0.1382	0.2890	354	0.1508
Al,Fe-MFI(100)	0.1365	0.2832	357	0.1467
Al,Fe-MFI(50)	0.1337	0.2232	336	0.0895
B,Fe-MFI(200)	0.1570	0.2207	392	0.0637
B,Fe-MFI(150)	0.1499	0.2069	373	0.057
B,Fe-MFI(100)	0.1345	0.1821	328	0.0476
B,Fe-MFI(50)	0.1302	0.1793	320	0.0491
Na,Fe-MFI(200)	0.1394	0.2743	348	0.1349
Na,Fe-MFI(150)	0.1379	0.2809	339	0.143
Na,Fe-MFI(100)	0.1348	0.2870	341	0.1522
Na,Fe-MFI(50)	0.1310	0.2269	332	0.0959

Table S1. Physical properties of calcined Ga, Fe-MFI, AI, Fe-MFI, B, Fe-MFI, and Na, Fe-MFI zeolites.

Figure S7. FE-SEM images of Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI zeolites. The scale bar in all images is 1 μ m.

Figure S8. FT-IR spectra of pyridine adsorbed at different temperatures over M,Fe-MFI(100) zeolites as well as calculated concentration of Brönsted and Lewis acidities at different temperatures.

Sample Name	Theoretical wt%		Final wt% (EDX)			U	lptake (%)
Sample Name	Fe (wt%)	Ga/Al/B (wt%)	Fe (wt%)	Ga/Al/B (wt%)	Na (wt%)	Fe (wt%)	Ga/Al/B (wt%)
Ga,Fe-MFI(200)	0.45	1.89	0.44	1.48	-	96.95	78.36
Ga,Fe-MFI(150)	0.60	1.89	0.56	1.48	-	92.68	78.48
Ga,Fe-MFI(100)	0.90	1.88	0.81	1.49	-	89.64	79.25
Ga,Fe-MFI(50)	1.79	1.86	1.63	1.5	-	91.01	80.50
Al,Fe-MFI(200)	0.46	0.74	0.45	0.73	-	98.01	98.72
Al,Fe-MFI(150)	0.61	0.74	0.55	0.6	-	89.98	81.26
Al,Fe-MFI(100)	0.91	0.74	0.75	0.57	-	82.05	77.44
Al,Fe-MFI(50)	1.81	0.73	1.41	0.55	-	77.83	75.40
B,Fe-MFI(200)	0.46	0.30	0.45	-	-	97.57	-
B,Fe-MFI(150)	0.61	0.30	0.60	-	-	97.72	-
B,Fe-MFI(100)	0.92	0.30	0.89	0.13	-	96.93	43.88
B,Fe-MFI(50)	1.82	0.29	1.65	0.11	-	90.68	37.47
Na,Fe-MFI(200)	0.46	0.74	0.44	0.71	0.61	95.83	96.01
Na,Fe-MFI(150)	0.61	0.74	0.53	0.67	0.6	86.70	90.74
Na,Fe-MFI(100)	0.91	0.74	0.77	0.56	0.66	84.23	76.08
Na,Fe-MFI(50)	1.81	0.73	1.39	0.55	0.86	76.73	75.40

 Table S2.
 Theoretical wt%, actual wt%, and percent uptake of heteroatoms for all samples.

Plot of final wt% of M versus initial wt% of M for all catalysts. (M: Ga, Al, and B)

Figure S9. Hydrogen peroxide consumption (top left), methane conversion (top right), and selectivity profiles (bottom) versus time for a reaction in which Al,Fe-MFI zeolites were used as catalysts. Reaction conditions: CH_4 Pressure: 443 psi, T: 55 °C, Amounts of catalyst 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of used H_2O_2 : 10 mL, 1500 rpm.

Figure S10. Selectivity profiles versus various catalysts. Conditions are similar for all the reactions: CH₄ Pressure: 443 psi, T: 55 °C, Amounts of catalyst: 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of H_2O_2 Solution: 10 mL, 1500 rpm, t: 30 min.

Figure S11. Hydrogen peroxide consumption versus various catalysts. Conditions are similar for all the reactions: CH₄ Pressure: 443 psi, T: 55 °C, Amounts of catalyst: 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of H_2O_2 Solution: 10 mL, 1500 rpm, t: 30 min. (M: Ga, Al, B)

Figure S12. IR spectra of calcined Ga,Fe-MFI, Al,Fe-MFI, B,Fe-MFI, and Na,Fe-MFI materials under the vacuum (10⁻⁵ Torr) at 500 °C for 30 min in the range of 4000-3000 cm⁻¹. The indicator shows the Kubelka-Munk Function unit (a.u.).

Figure S13. Hydrogen peroxide consumption versus various catalysts. Conditions are similar for all the reactions: CH₄ Pressure: 443 psi, T: 55 °C, Amounts of catalyst: 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of H_2O_2 Solution: 10 mL, 1500 rpm, t: 30 min. (M, Al, PNa, Na)

Figure S14. Methane conversion/total oxygenated products, hydrogen peroxide consumption, and selectivity profiles as a function of partial pressure of methane over Ga,Fe-MFI(50). T: 55 °C, Weight _{Catalyst}: 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of H_2O_2 Solution: 10 mL, 1500 rpm, t: 30 min.

Sample	CH₃OH	CH₃OOH	НСООН	CO ₂	Total Products	Total Productivity
	(µmoles)	(µmoles)	(µmoles)	(µmoles)	(µmoles)	(moles. Kg ⁻¹ _{Catalyst.} h ⁻¹)
Ga,Fe-MFI(200)	39.52	13.08	209.19	11.65	273.44	19.53
Ga,Fe-MFI(150)	33.07	7.59	400.27	13.12	454.05	32.43
Ga,Fe-MFI(100)	44.59	10.07	549.62	22.02	626.31	44.74
Ga,Fe-MFI(50)	35.98	7.71	648.05	25.00	716.73	51.20
Al,Fe-MFI(200)	24.57	16.42	185.11	10.00	236.10	16.86
Al,Fe-MFI(150)	28.69	10.21	345.79	24.00	408.70	29.19
Al,Fe-MFI(100)	43.17	6.67	530.86	39.41	620.10	44.29
Al,Fe-MFI(50)	33.51	2.98	536.73	43.38	616.60	44.04
B,Fe-MFI(200)	8.14	16.13	22.89	1.70	48.87	3.49
B,Fe-MFI(150)	9.14	14.69	27.79	1.80	53.42	3.82
B,Fe-MFI(100)	26.04	23.95	84.77	1.61	136.36	9.74
B,Fe-MFI(50)	31.55	7.98	185.31	5.41	230.25	16.45
Na,Fe-MFI(200)	1.06	1.30	1.34	0.00	3.70	0.26
Na,Fe-MFI(150)	1.16	1.50	2.34	0.00	5.00	0.36
Na,Fe-MFI(100)	4.03	4.24	10.01	0.02	18.30	1.31
Na,Fe-MFI(50)	3.97	4.77	21.25	0.01	30.00	2.14

Table S3. Catalytic studies of various (Ga/Al/B/Na),Fe-MFI zeolites for oxidation of methane under mild conditions. Conditions are similar for all the reactions: CH₄ Pressure: 443 psi, T: 55 °C, Weight _{Catalyst}: 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of H_2O_2 Solution: 10 mL, 1500 rpm, t: 30 min.

Comple	S _{снзон}	S _{снзоон}	S _{нсоон}	S _{CO2}	TOF
Sample	(%)	(%)	(%)	(%)	(h⁻¹)
Ga,Fe-MFI(200)	14.45	4.78	76.50	4.26	247.9
Ga,Fe-MFI(150)	7.28	1.67	88.16	2.89	317.7
Ga,Fe-MFI(100)	7.12	1.61	87.76	3.52	308.4
Ga,Fe-MFI(50)	5.02	1.08	90.42	3.49	175.4
Al,Fe-MFI(200)	10.41	6.95	78.40	4.24	209.3
Al,Fe-MFI(150)	7.02	2.50	84.61	5.87	296.4
Al,Fe-MFI(100)	6.96	1.08	85.61	6.36	329.8
Al,Fe-MFI(50)	5.44	0.48	87.05	7.04	174.4
B,Fe-MFI(200)	16.65	33.02	46.85	3.48	57.3
B,Fe-MFI(150)	17.10	27.50	52.03	3.37	38.7
B,Fe-MFI(100)	19.10	17.56	62.16	1.18	71.6
B,Fe-MFI(50)	13.70	3.47	80.48	2.35	58.9
Na,Fe-MFI(200)	28.73	35.00	36.28	0.00	3.4
Na,Fe-MFI(150)	23.23	30.00	46.77	0.00	3.8
Na,Fe-MFI(100)	22.00	23.15	54.72	0.13	9.5
Na,Fe-MFI(50)	13.23	15.90	70.84	0.03	8.6

Table S4. Selectivity profile and turnover frequency for all the reactions in which (Ga/AI/B/Na),Fe-MFI zeolites were used. Conditions are similar for all the reactions: CH_4 Pressure: 443 psi, T: 55 °C, Weight _{Catalyst}: 28 mg, Concentration of H_2O_2 : 0.5 M, Volume of H_2O_2 Solution: 10 mL, 1500 rpm, t: 30 min.