Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Building Metal-functionalized Porous Carbons from Microporous Organic Polymers for CO₂ Capture and Conversion under Ambient Conditions

Shuai Gu,‡ Wenguang Yu,‡ Jingjing Chen, He Zhang, Yan Wang, Juntao Tang, Guipeng Yu,* Chunyue Pan

College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.

[‡]These authors contributed equally to this work.

Corresponding author: Professor Guipeng Yu (e-mail: gilbertyu@csu.edu.cn).

Table of Contents

1. Character	2
2. Powder X-Ray Diffraction	3
3. Morphology analysis by SEM	4
4. Morphology analysis by TEM	5
5. Elemental analysis	7
6. Infrared spectroscopy	8
7. CO ₂ cycloaddition reaction	10

1. Character

Figure S1. (a) N_2 adsorption (solid symbols)/desorption (open symbols) isotherms at 77K and (b) NLDFT pore size distribution of the precursor.

Figure S2. ¹³C CP-MAS NMR spectrum of the precursor.

2. Powder X-Ray Diffraction

Figure S3. Powder X-Ray Diffraction of porous carbons.

3. Morphology analysis by SEM

Figure S4. SEM images of (a) ZnO/C-Pre(9.1wt%), (b) C-Pre(9.1wt%) and (c) ZnO/C-Pre(9.1wt%)/PBM.

4. Morphology analysis by TEM

Figure S5. TEM images of precursor.

Figure S6. TEM images of C-Pre(9.1wt%).

Figure S7. TEM images of ZnO/C-Pre(9.1wt%).

Figure S8. TEM images of ZnO/C-Pre(9.1wt%)/PBM.

5. Elemental analysis

Figure S9. Wide XPS survey spectra of carbons.

Figure S10. High-resolution N 1s XPS spectra of (a) ZnO/C-Pre(9.1wt%) and (b) C-Pre(9.1wt%).

6. Infrared spectroscopy

Figure S11 FTIR spectra of (a) ZnO and (b) ZnO/C-Pre(9.1wt%).

Sample	С	0	N	Zn	Cl
ZnO/C-Pre(9.1wt%)	78.87	11.51	6.86	2.36	-
C-Pre(9.1wt%)	97.22	ND	2.14	0.35	0.29

Table S1. XPS elemental data (at%) of carbon materials.

Table S2. ICP-AES data (wt%) of carbon materials.

Sample	Zn
ZnO/C-Pre(9.1wt%)	2.42
C-Pre(16.7wt%)	0.05
C-Pre(9.1wt%)	0.12
C-Pre(6.2wt%)	0.14

7. CO₂ cycloaddition reaction

	$Cl \checkmark 0 + CO_2 \longrightarrow 0$		
Entry	Catalyst	Time (h)	Yield ^b (%)
1	ZnO/C-Pre(9.1wt%)	12	57
2	ZnO/C-Pre(9.1wt%)	24	75
3	ZnO/C-Pre(9.1wt%)	36	87
4	ZnO/C-Pre(9.1wt%)	48	91
5	ZnO/C-Pre(9.1wt%)	60	92
6	C-Pre(16.7wt%)	48	61
7	C-Pre(9.1wt%)	48	45
8	C-Pre(6.2wt%)	48	60
9	MOP-8C	48	69
10	ZnO/C-Pre(9.1wt%)/PBM	48	54

Table S3. Catalytic cycloaddition of CO_2 with epichlorohydrin to form cyclic carbonates^a.

^a Reaction conditions: 10 mmol epoxide, 10 mg catalyst, 1 mmol TBAB, CO₂ (0.1 MPa), 25 °C. ^b Products were characterized by ¹H NMR and the yields refer to isolated products.

Figure S12. N₂ adsorption (solid symbols)/desorption (open symbols) isotherms of the precursor and the C-Dire (the carbon material pyrolysed without ZnCl₂ molten salt) at 77K.

Figure S13. ¹H NMR (400 MHz, CDCl₃, 298 K) spectra of (±)-propylene oxide and its corresponding cyclic carbonate (¹H NMR spectrum was obtained from the crude sample).

Possible catalytic pathway

Figure S14. Scheme of possible catalytic mechanism for the reaction of epoxide and CO_2 into cyclic carbonate catalyzed by ZnO/C-Pre(9.1wt%).

Figure S15. ¹H NMR (400 MHz, CDCl₃, 298 K) spectra of epichlorohydrin and its corresponding cyclic carbonate at 12 h (¹H NMR spectrum was obtained from the crude sample).

Figure S16. ¹H NMR (400 MHz, CDCl₃, 298 K) spectra of epichlorohydrin and its corresponding cyclic carbonate at 24 h (¹H NMR spectrum was obtained from the crude sample).

Figure S17. ¹H NMR (400 MHz, CDCl₃, 298 K) spectra of epichlorohydrin and its corresponding cyclic carbonate at 36 h (¹H NMR spectrum was obtained from the crude sample).

Figure S18. ¹H NMR (400 MHz, CDCl₃, 298 K) spectra of epichlorohydrin and its corresponding cyclic carbonate at 48 h (¹H NMR spectrum was obtained from the crude sample).

Figure S19. ¹H NMR (400 MHz, CDCl₃, 298 K) spectra of epichlorohydrin and its corresponding cyclic carbonate at 60 h (¹H NMR spectrum was obtained from the crude sample).

Figure S20. ¹H NMR (400 MHz, CDCl₃, 298 K) spectra of 1,2-epoxybutane and its corresponding cyclic carbonate (¹H NMR spectrum was obtained from the crude sample).

Figure S21. ¹H NMR (400 MHz, CDCl₃, 298 K) spectra of cyclohexane oxide and its corresponding cyclic carbonate (¹H NMR spectrum was obtained from the crude sample).

Figure S22. ¹H NMR (400 MHz, CDCl₃, 298 K) spectra of epibromohydrin and its corresponding cyclic carbonate (¹H NMR spectrum was obtained from the crude sample).

Figure S23. ¹H NMR spectra (in CDCl₃) of the reaction mixture (epibromohydrin) using ZnO/C-Pre(9.1wt%) as a catalyst in the 2nd cycle of recyclability test.

Figure S24. ¹H NMR spectra (in CDCl₃) of the reaction mixture (epibromohydrin) using ZnO/C-Pre(9.1wt%) as a catalyst in the 3^{rh} cycle of recyclability test.

Figure S25. ¹H NMR spectra (in CDCl₃) of the reaction mixture (epibromohydrin) using ZnO/C-Pre(9.1wt%) as a catalyst in the 4th cycle of recyclability test.

Figure S26. ¹H NMR spectra (in CDCl₃) of the reaction mixture (epibromohydrin) using ZnO/C-Pre(9.1wt%) as a catalyst in the 5th cycle of recyclability test.