Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Material

Synergistic effect between Cu-Cr bimetallic oxides supported on

g-C₃N₄ for the selective oxidation of toluene to benzaldehyde

Cai Xu, Xiaozhong Wang *, Yingqi Chen and Liyan Dai *

Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture

Technology, College of Chemical and Biological Engineering, Zhejiang University,

Hangzhou 310027, China

*Corresponding authors.

- (X. Wang) E-mail: wangxiaozhong@zju.edu.cn.
- (L. Dai) E-mail: dailiyan@zju.edu.cn; Tel: +86 571 87952693; Fax: +86 571 87953294.

Fig. S1 Auger spectra of Cu LMM of the prepared catalysts.

Fig. S2 Effect of catalyst amount on toluene oxidation. Reaction conditions: acetonitrile (5 ml), toluene (2.5 mmol), H₂O₂ (10 mmol), 75 °C, 5 h.

Fig. S3 Effect of reaction time on toluene oxidation. Reaction conditions: acetonitrile (5 ml), toluene (2.5 mmol), H₂O₂ (10 mmol), catalyst (20 mg), 75 °C.

Fig. S4 (a) XRD patterns of the fresh and reused CuCr₂/CN catalyst after six catalytic cycles, (b) FESEM image and (c) TEM image of the reused CuCr₂/CN catalyst.

Entry	Sample	Cu/Cr (nominal)	Cu/Cr (obtained by XPS)
1	CuCr ₂ /CN	0.50	0.49
2	CuCr/CN	1.00	1.00
3	Cu ₂ Cr/CN	2.00	2.02

 Table S1 The Cu/Cr molar ratios of the prepared Cu-Cr bimetallic catalysts.