Supporting Information

Bimetallic Ni-Co Composite Anchored in Wool Ball-like Carbon Framework as High-efficiency Bifunctional Electrodes for Rechargeable Zn-air Batteries

Fantao Kong, Yu Qiao, Chaoqi Zhang, Ruijing Li, Tingting Cheng, Aiguo Kong* and Yongkui Shan*

School of Chemistry and Molecular Engineering, East China Normal University, 500 Dong chuan Road, Shanghai 200241, P. R. China.

Corresponding Author: agkong@chem.ecnu.edu.cn, ykshan@chem.ecnu.edu.cn

CONTENTS

Fig. S1. Calibration to reversible hydrogen electrode (RHE) in 0.1 M KOH (a), 0.5 M H_2SO_4 (b) and 1.0 M KOH (c) electrolytes.

Fig. S2. The selected-area electron diffraction (SAED) image of NiCo@N-C-900.

Fig. S3. (a) The high-resolution N 1s XPS spectra of the N-GCTHs, (b) Co 2p XPS spectra of the Co@N-C and (c) Ni 2p XPS spectra of the Ni@N-C.

Fig. S4. CV curve of NiCo@N-C-900 in O₂-saturated 1 M KOH solution.

Fig. S5. RRDE measurement curves of ORR on NiCo@N-C-800, 900, 1000 in O2-saturated 0.1 M

KOH and 0.5 M H_2SO_4 solutions at a rotation rate of 1600 rpm with the scan rate of 5 mV s⁻¹.

Fig. S6. Chronopotentiometric stability test of NiCo@N-C-900 with a stationary current density of 20 mA cm⁻².

Fig. S7. XRD pattern of the NiCo@N-C-HCl catalyst.

Fig. S8. LSV polarization curves on different catalysts in O₂-saturated 1.0 M KOH electrolyte.

Fig. S9. The LSV curves of NiCo@N-C-900 for ORR (a) and OER (b) using graphite rod or Pt wire

as counter electrode and Hg/HgO or Ag/AgCl as reference electrode.

Table S1. (a) The surface composition of different catalysts and the relative content of different types of nitrogen species on N-GCTHs, N-C-900, Co@N-C, Ni@N-C and NiCo@N-C-800, 900, 1000 from the XPS analysis. (b) The relative content of Co-Nx and Ni-Nx moieties on Co@N-C, Ni@N-C and NiCo@N-C estimated from the XPS analysis.

Table S2. (a) Comparison of ORR and OER catalytic activity for the recently reported non-precious electrocatalysts in the literature; (b) Comparison of ORR catalytic activity in acidic electrolytes for recently reported non-precious electrocatalysts in the literature.

Fig. S1 Calibration to reversible hydrogen electrode (RHE) in 0.1 M KOH (a), 0.5 M H_2SO_4 (b) and 1.0 M KOH (c) electrolytes.

All the reported potentials in our paper were calibrated to the RHE potentials according to the reported method.^{S1} The calibration was performed in a standard three-electrode system with platinum wires as the working and counter electrodes, and the Ag/AgCl electrode as the reference electrode. Linear scanning voltammetry (LSV) was then run at a scan rate of 5 mV s⁻¹, and the potential at which the current crossed zero is taken to be the thermodynamic potential for the hydrogen electrode reactions.

Fig. S2 The selected-area electron diffraction (SAED) image of NiCo@N-C-900.

Fig. S3 (a) The high-resolution N 1s XPS spectra of the N-GCTHs, (b) Co 2p XPS spectra of the Co@N-C and (c) Ni 2p XPS spectra of the Ni@N-C.

Fig. S4 The CV curve of NiCo@N-C-900 in O₂-saturated 1 M KOH solution.

Fig. S5 (a,c) RRDE polarization curves of ORR on NiCo@N-C-800, 900, 1000 in O₂-saturated 0.1 M KOH and 0.5 M H_2SO_4 at a rotation rate of 1600 rpm. (b,d) The ORR electron transfer numbers (*n*) and yield of H_2O_2 (%) for different catalysts based on the corresponding RRDE polarization curves.

Fig. S6 Chronopotentiometric stability test of NiCo@N-C-900 with a stationary current density of 20 mA cm⁻².

Fig. S7 XRD pattern of the NiCo@N-C-HCl catalyst.

Fig. S8 (a) LSV polarization curves on N-C, Ni@N-C, Co@N-C, NiCo@N-C and IrO₂ catalysts in O₂-saturated 1.0 M KOH electrolyte. (b) LSV polarization curves of OER on NiCo@N-C, NiCo@N-C-HCl and NiCo@N-C-HCl SCN⁻ catalysts in O₂-saturated 1.0 M KOH electrolyte. (c) LSV polarization curves of OER on C, N-C, N-C-HCl SCN⁻ and NiCo@N-C-HCl SCN⁻ catalysts in O₂-saturated 1.0 M KOH electrolyte.

Fig. S9 The LSV curves of NiCo@N-C-900 for ORR (a) and OER (b) using graphite rod or Pt wire as counter electrode and Hg/HgO or Ag/AgCl as reference electrode.

The corresponding contrast experiments were carried out to investigate the electrocatalytic activity of NiCo@N-C-900 catalyst for ORR and OER using a graphite rod as the counter electrode and Hg/HgO as a reference electrode. As can be seen from Fig. S9-a and b, the difference of ORR and OER activity on NiCo@N-C-900 catalyst using graphite rod as counter electrode and Hg/HgO as reference

electrode from that using Pt wire as counter electrode and Ag/AgCl as reference electrode is negligible in alkaline media. This result confirms that Pt can be served as the counter electrode and Ag/AgCl electrode is also stable and suitable in alkaline media. In addition, it is the most common method that Pt electrode served as a counter electrode and Ag/AgCl as a reference electrode during ORR and OER tests in alkaline media in the literature.^{S2-S7}

Table S1-a. The surface composition of different catalysts and the relative content of different types of nitrogen species on N-GCTHs, Co@N-C, Ni@N-C and NiCo@N-C from the XPS analysis.

Samples	Element composition (at. %)				Relative content (%)					
	С	Ν	0	Co	Ni	Py-N	M-N _x	Pyr-N	G-N	NO _x
N-GCTHs	78.46	8.64	12.9			36.0		64.0		
Co@N-C	94.23	2.39	2.87	0.51	_	15.6	24.6	15.5	23.8	20.6
Ni@N-C	93.55	1.82	2.82		1.8	9.1	21.8	18.5	27.4	23.2
NiCo@N-C	88.84	3.65	4.80	1.19	1.52	25.4	32.0	12.4	16.8	13.3

Table S1-b. The relative content of $Co-N_x$ and $Ni-N_x$ moieties on Co@N-C, Ni@N-C and NiCo@N-CC estimated from the XPS analysis.

Samples	Relative content (%)				
Sumpies	Co@N-C	Ni@N-C	NiCo@N-C		
C_0-N_x (%)	33.7		44.8		
Ni-N _x (%)		23.5	32.7		

		ORR	ORR	OER		
Catalysts	Loading mg/cm ²	Onset potential	Half-wave potential	Potential at 10mA cm ⁻²	Ref	
		(V vs. RHE)	(V vs. RHE)	(V vs. RHE)		
Co@NCNT	0.425	1.03	0.828	1.66	S8	
Co@Co ₃ O ₄ /NC	0.21	—	0.8	1.65	S9	
NiCo@NCNT-700	0.21	0.93	0.82	_	S10	
NiCo@NC	0.40	—	0.81	1.76	S11	
NPCN/NiCo-NCNT	0.714	0.94	~0.87	1.59	S12	
NiCo@NCNT/NF	8.45	0.97	0.87	1.54	S13	
Co-C ₃ N ₄ /CNT	0.41	0.90		1.61	S14	
NiCo/PFC	0.13	0.92	0.76	1.63	S15	
NCNT/CoONiO-NiCo	0.21	1.0	0.83	1.51	S16	
CuCo@NC	0.18	0.96	0.88	—	S17	
PPy/FeTCPP/Co	0.30	1.01	0.86	1.57	S18	
Fe _{0.3} Co _{0.7} /NC	0.26	_	0.88	—	S19	
3D-CNTA	0.41	0.95	0.81	1.59	S20	
Pt/C-JM	0.10	1.04	0.84	—	This work	
NiCo@N C 000	0.61 N-C-900 0.96	1.06	0.88	_	This work	
111C0@11-C-900		—	—	1.51	THIS WOLK	

Table S2-a. Comparison of ORR and OER catalytic activity in alkaline electrolytes for recently

 reported non-precious electrocatalysts in the literature.

Catalysts	Loading mg/cm ²	Half-wave potential (V vs. RHE)	Electrolytes	Ref
PPy/FeTCPP/Co	0.30	0.72	0.1M HClO ₄	S18
NiCo@NCNT-700	0.21	0.40	0.1M HClO ₄	S11
Co-N _x -C	0.60	0.71	0.1M HClO ₄	S21
FeCo/C-800	0.60	0.75	0.1M HClO ₄	S22
CoFe-PDAP	0.50	0.73	$0.5M H_2 SO_4$	S23
PpPD-Fe-C	0.90	0.72	0.5 M H ₂ SO ₄	S24
FePc-Py-CNT	0.32	0.66	$0.5M H_2SO_4$	S25
Co corrole/BP2000	0.40	0.73	$0.5M H_2SO_4$	S26
Co, N-CNF	0.36	0.67	$0.5M H_2 SO_4$	S27
Fe ₃ Mn–AAPyr	0.60	0.75	$0.5M H_2 SO_4$	S28
FeMo-C/N-3	0.10	0.67	$0.5M H_2SO_4$	S29
PANI-FeCo-C	0.60	0.80	$0.5M H_2SO_4$	S30
CoP-CMP800	0.60	0.64	$0.5M H_2 SO_4$	S31
Fe/Co-CMP-800	0.60	0.78	$0.5M H_2 SO_4$	S32
Pt-JM	0.10	0.78	$0.5M H_2SO_4$	This work
NiCo@N-C-900	0.81	0.76	$0.5M H_2SO_4$	This work

Table S2-b. Comparison of ORR catalytic activity in acidic electrolytes for recently reported non

 precious electrocatalysts in the literature.

References

[S1] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, Nat. Mater., 2011, 10, 780.

[S2] A. Mathur and A. Halder, Catal. Sci. Techn., 2019, 9, 1245-1254.

- [S3] X. Chen, J. Wang, X. Huang, X. Zhao, P. Liu, B. He, T. Wang and J. Masa, *Catal. Sci. Techn.*, 2018, 8, 1104-1112.
- [S4] H. Fan, H. Liu, X. Hu, G. Lv, Y. Zheng, F. He, D. Ma, Q. Liu, Y. Lu and W. Shen, *J. Mater. Chem. A*, 2019, **7**, 11321-11330.

[S5] P. Xi, S. Xi and J. Wang, J. Mater. Chem. A, 2019. DOI: 10.1039/c9ta02894c.

[S6] K. P. Singh, E. J. Bae and J.-S. Yu, J. Am. Chem. Soc., 2015, 137, 3165-3168.

- [S7] T. D. Thanh, N. D. Chuong, H. V. Hien, N. H. Kim and J. H. Lee, ACS Appl. Mater. Interfaces, 2018, 10, 4672-4681.
- [S8] E. Zhang, Y. Xie, S. Ci, J. Jia, P. Cai, L. Yi and Z. Wen, *J. Mater. Chem. A*, 2016, **4**, 17288-17298.
- [S9] A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. J. Botz, R. A. Fischer, W. Schuhmann and M. Muhler, Angew. Chem. Int. Ed., 2016, 55, 4087-4091.
- [S10] L. Zeng, X. Cui, L. Chen, T. Ye, W. Huang, R. Ma, X. Zhang and J. Shi, *Carbon*, 2017, **114**, 347-355.
- [S11] Y. Fu, H. Y. Yu, C. Jiang, T. H. Zhang, R. Zhan, X. Li, J. F. Li, J. H. Tian and R. Yang, Adv. Funct. Mater., 2018, 28, 1705094.
- [S12] Y. Hou, S. Cui, Z. Wen, X. Guo, X. Feng and J. Chen, Small, 2015, 11, 5940-5948.
- [S13] W. Niu, S. Pakhira, K. Marcus, Z. Li, J. L. Mendoza-Cortes and Y. Yang, Adv. Energy Mater., 2018, 1800480.
- [S14] Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L. H. Li, Y. Han, Y. Chen and S.-Z. Qiao, J. Am.

Chem. Soc., 2017, 139, 3336-3339.

[S15] G. Fu, Y. Chen, Z. Cui, Y. Li, W. Zhou, S. Xin, Y. Tang and J. B. Goodenough, *Nano Lett.*, 2016, 16, 6516-6522.

- [S16] X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu and J. Cho, Angew. Chem. Int. Ed., 2015, 54, 9654-9658.
- [S17] M. Kuang, Q. Wang, P. Han and G. Zheng, Adv. Energy Mater., 2017, 7, 1700193.
- [S18] J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong and H. Xu, Adv. Funct. Mater., 2017, 27, 1606497.
- [S19] B. Y. Guan, Y. Lu, Y. Wang, M. Wu and X. W. Lou, Adv. Funct. Mater., 2018, 28, 1706738.
- [S20] S. Wang, J. Qin, T. Meng and M. Cao, *Nano Energy*, 2017, **39**, 626-638.
- [S21] A. Kong, Y. Kong, X. Zhu, Z. Han and Y. Shan, *Carbon*, 2014, 78, 49-59.
- [S22] Q. Lin, X. Bu, A. Kong, C. Mao, F. Bu and P. Feng, Adv. Mater., 2015, 27, 3431-3436.
- [S23] Y. Zhao, K. Watanabe and K. Hashimoto, J. Am. Chem. Soc., 2012, 134, 19528-19531.
- [S24] Y. Zhu, B. Zhang, X. Liu, D. W. Wang and D. S. Su, *Angew. Chem. Int. Ed.*, 2014, **126**, 10849-10853.
- [S25] R. Cao, R. Thapa, H. Kim, X. Xu, M. G. Kim, Q. Li, N. Park, M. Liu and J. Cho, *Nat. Commun.*, 2013, 4, 2076.
- [S26] N. Levy, A. Mahammed, M. Kosa, D. T. Major, Z. Gross and L. Elbaz, *Angew. Chem. Int. Ed.*, 2015, 54, 14080-14084.
- [S27] L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G. I. Waterhouse, L. Z. Wu, C. H. Tung and T. Zhang, *Adv. Mater.*, 2016, **28**, 1668-1674.
- [S28] A. Serov, M. H. Robson, M. Smolnik and P. Atanassov, *Electrochim. Acta*, 2012, **80**, 213-218.
 [S29] L. Lin, Z. K. Yang, Y.-F. Jiang and A.-W. Xu, *ACS Catal.*, 2016, **6**, 4449-4454.

- [S30] G. Wu, K. L. More, C. M. Johnston and P. Zelenay, Science, 2011, 332, 443-447.
- [S31] Z. S. Wu, L. Chen, J. Liu, K. Parvez, H. Liang, J. Shu, H. Sachdev, R. Graf, X. Feng and K. Müllen, *Adv. Mater.*, 2014, 26, 1450-1455.
- [S32] S. Brüller, H.-W. Liang, U. I. Kramm, J. W. Krumpfer, X. Feng and K. Müllen, J. Mater. Chem. A, 2015, 3, 23799-23808.