Supporting Information

Hierarchical flower-like ZnIn₂S₄ anchored with well-dispersed Ni₁₂P₅ nanoparticles for high-quantum-yield photocatalytic H₂ evolution under visible light

Deqian Zeng,^{*ab} Zhiqing Lu,^{ab} Xueyou Gao,^{ab} Bingjia Wu^{ab} and Wee-Jun Ong^{*cd}

^a School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

^b Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China

^c School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia

^d College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

*Corresponding authors: <u>dqzeng@gxu.edu.cn</u> (D. Zeng);

weejun.ong@xmu.edu.my; ongweejun@gmail.com (W.-J. Ong)

Fig. S1. TEM image of $Ni_{12}P_5$ nanoparticles.

Fig. S2. High-magnification TEM image of $ZnIn_2S_4$.

Fig. S3. EDX spectrum of $ZnIn_2S_4/Ni_{12}P_5$ composites.

Fig. S4. XRD pattern of spent $ZnIn_2S_4/Ni_{12}P_5$ composites.

Fig. S5. TEM image of spent $ZnIn_2S_4/Ni_{12}P_5$ composites.

Table S1. Comparison of the photocatalytic H_2 evolution activity of the $ZnIn_2S_4$ -based system decorated with precious-metal-free cocatalysts.

Catalyst	Cocatalysts	Light source	Sacrificial	Activity	AQY (%)	Ref.
(Mass)	(Loading)		reagent	(µmol h ⁻¹ g ⁻¹)	(Wavelength)	
ZnIn ₂ S ₄ /RGO/MoS ₂	RGO/MoS ₂	300 W Xe lamp	Lactic acid	1620	0.4	1
(0.10 g)	(0.5 wt% RGO)	(λ> 420 nm)			(420 nm)	
RGO/ZnIn ₂ S ₄	RGO	300 W Xe lamp	Lactic acid	817		2
(0.05 g)	(1 wt%)	(λ> 420 nm)				
CNFs@ZnIn ₂ S ₄	CNFs	300 W Xe lamp	0.25 M Na ₂ SO ₃	3167	25.35	3
(0.03 g)	(15 wt%)	(λ> 420 nm)	0.35 M Na ₂ S		(420 nm)	
ZnIn ₂ S ₄ /MoSe ₂	MoSe ₂	300 W Xe lamp	0.25 M Na ₂ SO ₃	2228	21.39	4
(0.06 g)	(2 wt%)	(λ> 420 nm)	0.35 M Na ₂ S		(420 nm)	
Ni ₂ P/ZnIn ₂ S ₄	Ni ₂ P	300 W Xe lamp	Lactic acid	2066	7.7	5
(0.05 g)	(10 wt%)	$(\lambda > 400 \text{ nm})$			(420 nm)	
MoS ₂ /ZnIn ₂ S ₄	MoS ₂	300 W Xe lamp	0.25 M Na ₂ SO ₃	975		6
(0.08 g)	(15 wt%)	(λ> 420 nm)	0.35 M Na ₂ S			

ZnIn ₂ S ₄ @In(OH) ₃	In(OH) ₃	300 W Xe lamp	0.35 M Na ₂ SO ₃	522	1.45	7
(0.01 g)	(-)	(λ> 400 nm)	0.25 M Na ₂ S		(400 nm)	
ZnIn ₂ S ₄ /Ni ₁₂ P ₅	Ni ₁₂ P5	300 W Xe lamp	0.25 M Na ₂ SO ₃	2263	20.5	Our
1		-				
(0.05 g)	(1 wt%)	(λ> 420 nm)	0.35 M Na ₂ S		(420 nm)	work

RGO, Reduced Graphene Oxide; CNFs, carbon nanofibers

References

- 1. N. Ding, Y. Fan, Y. Luo, D. Li and Q. Meng, APL Mater., 2015, 3, 104417.
- 2. L. Ye, J. Fu, Z. Xu, R. Yuan and Z. Li, ACS Appl. Mater. Interfaces, 2014, 6, 3483-3490.
- 3. Y. Chen, G. Tian, Z. Ren, K. Pan, Y. Shi, J. Wang and H. Fu, *ACS Appl. Mater. Interfaces*, 2014, **6**, 13841-13849.
- 4. D. Zeng, L. Xiao, W.-J. Ong, P. Wu, H. Zheng, Y. Chen and D.-L. Peng, *ChemSusChem*, 2017, **10**, 4624-4631.
- 5. X.-l. Li, X.-j. Wang, J.-y. Zhu, Y.-p. Li, J. Zhao and F.-t. Li, *Chem. Eng. J.*, 2018, **353**, 15-24.
- 6. G. Tian, Y. Chen, Z. Ren, C. Tian, K. Pan, W. Zhou, J. Wang and H. Fu, *Chem. Asian J.*, 2014, **9**, 1291-1297.
- M. Geng, Y. Peng, Y. Zhang, X. Guo, F. Yu, X. Yang, G. Xie, W. Dong, C. Liu, J. Li and J. Yu, *Int. J. Hydrogen Energy*, 2019, 44, 5787-5798.