Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

1	Supporting Information
2	The synergetic mechanism of NO _x and chlorobenzene
3	degradation in municipal solid waste incinerators
4	
5	Lina Gan ^a , Yun Wang ^a , Jianjun Chen ^a , Tao Yan ^a , Yue Peng ^a *, Junhua Li ^a and John
6	Crittenden ^b
7	^a State Key Joint Laboratory of Environment Simulation and Pollution Control,
8	National Engineering Laboratory for Multi Flue Gas Pollution Control Technology
9	and Equipment, School of Environment, Tsinghua University, Beijing, 100084, China
10	^b Brook Byers Institute for Sustainable Systems, School of Civil and Environmental
11	Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
12	
13	
14	*Corresponding author: pengyue83@tsinghua.edu.cn
15	Tel.: +86 10 62771093, fax: +86 10 62771093

16 SI figure captions

- 17 Figure S1. The effect of CB on N₂ selectivity and the effect of SCR gas on CO₂
- 18 selectivity for 10-h test at 300 °C. Reaction conditions: NO 500 ppm (when used), CB
- 19 50 ppm (when used), NH_3 500 ppm (when used), O_2 10 vol.%, N_2 as the balance gas,
- 20 GHSV 60,000 mL/(g·h).
- 21 Figure S2. The NO_x conversion of CB-SCR of MnO_x-CeO₂ catalyst at 300 °C.
- 22 Reaction conditions: NO 500 ppm, CB 50 ppm (when used), NH₃ 500 ppm (when used),
- 23 O₂ 10 vol.%, N₂ as the balance gas, GHSV 60,000 mL/(g·h).
- 24 Figure S3. The concentrations of CB, CO, CO₂, and N₂O, NO, NO₂ during the SCR-
- 25 transient reaction with CB at 300 °C. Reaction conditions: NO 500 ppm, CB 50 ppm,
- 26 NH₃ 500 ppm, O₂ 10 vol.%, N₂ as the balance gas, GHSV 60,000 mL/(g·h).
- 27 Figure S4. The concentrations of N₂O, NO, NO₂ and CB, CO₂ during the SCR reactions
- 28 without/with CB and CB oxidation reactions with/without SCR flue gas at 300 °C.
- 29 Reaction conditions: NO 500 ppm (when used), CB 50 ppm (when used), NH₃ 500 ppm
- 30 (when used), O₂ 10 vol.%, N₂ as the balance gas, GHSV 60,000 mL/(g·h).
- 31 Figure S5. XPS spectra: (a) Mn 2p, and (b) Ce 3d of the fresh and used catalysts.

34 Figure S1. The effect of CB on N₂ selectivity and the effect of SCR gas on CO₂

35 selectivity for 10-h test at 300 °C. Reaction conditions: NO 500 ppm (when used),

36 CB 50 ppm (when used), NH_3 500 ppm (when used), O_2 10 vol.%, N_2 as the balance

37

gas, GHSV 60,000 mL/(g·h).

40 Figure S2. The NO_x conversion of CB-SCR of MnO_x -CeO₂ catalyst at 300 °C.

41 Reaction conditions: NO 500 ppm, CB 50 ppm (when used), NH₃ 500 ppm (when

42 used), O₂ 10 vol.%, N₂ as the balance gas, GHSV 60,000 mL/(g·h).

43

Figure S3. The concentrations of CB, CO, CO₂, and N₂O, NO, NO₂ during the SCRtransient reaction with CB at 300 °C. Reaction conditions: NO 500 ppm, CB 50 ppm,
NH₃ 500 ppm, O₂ 10 vol.%, N₂ as the balance gas, GHSV 60,000 mL/(g·h).

50 Figure S4. The concentrations of N₂O, NO, NO₂ and CB, CO₂ during the SCR

51 reactions without/with CB and CB oxidation reactions with/without SCR flue gas at

52 300 °C. Reaction conditions: NO 500 ppm (when used), CB 50 ppm (when used),

53 NH_3 500 ppm (when used), O_2 10 vol.%, N_2 as the balance gas, GHSV 60,000

54

57 Figure S5. XPS spectra: (a) Mn 2p, and (b) Ce 3d of the fresh and used catalysts.

58

56