Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Enhanced Electrocatalytic Dechlorination of 2,4-Dichlorophenoxyacetic Acid on In-situ Prepared Pd-anchored Ni(OH)₂ Bifunctional Electrode: Synergistic Effect between H* Formation on Ni(OH)₂ and Dechlorination Steps on Pd

Shuang Song^{1,2}, Qiuxiang Liu^{1,2}, Jinhui Fang¹, Weiting Yu^{1,*}

¹College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
²Collaborative Innovation Center of Yangtze River Delta Region Green
Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China

*Corresponding author: Weiting Yu

E-mail:weitingyu@zjut.edu.cn

Figure S1. Time dependence of 2,4-D concentration at the applied potential of -0.40 V, -0.65 V, -0.75 V, -1.00 V and -1.25 V on Pd₁Cl_{32.}

Figure S2. TEM images of Pd_1HCl_{32} (a) TEM (b) HRTEM and (c) Mapping of

element.

Figure S3. TEM images of Pd_1Cl_5 (a) TEM, (b) HRTEM of Pd, (c) HRTEM of Ni and (d) Mapping of element.

Figure S4. TEM images of Pd_1Cl_{302} (a) TEM, (b) HRTEM of Pd, (c) HRTEM of Ni and (d) Mapping of element.

Figure S5. The trend of current efficiency with dechlorination time on Pd_1Cl_{32} at the applied potential of -0.65 V.

Figure S6. FE-SEM image of Pd_1Cl_{32} after 5 cycles of 2,4-D dechlorination.