Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supplementary information

Macroscopic assembly style of catalysts significantly determining their efficiency for converting CO₂ to gasoline

Xiaoxing Wang^a, Guohui Yang^{a,*}, Junfeng Zhang^a, Faen Song^a, Yingquan Wu^a, Tao Zhang^a, Qingde

Zhang^a, Noritatsu Tsubaki^c, Yisheng Tan^{a,b,*}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences,

Taiyuan 030001, China

^b National Engineering Research Center for Coal–Based Synthesis, Institute of Coal Chemistry, Chinese

Academy of Sciences, Taiyuan 030001, China

^c Department of Applied Chemistry, School of Engineering, University of Toyama,

Gofuku 3190, Toyama 930-8555, Japan

Catalysts	CO ₂ conv.	Selectivity (C- mol%)		Hydrocarbon distribution (C-mol %)			I-C ₅₊	Aromatics	
	(%)	СО	Оху	НС	C ₁	C ₂₋₄	C ₅₊	- /C ₅₊ (%)	/C ₅₊ (%)
Fe–Zn–Zr@HZSM-5(38)	22.5	42.0	0.0	58.0	1.3	53.3	45.4	75.4	19.7
Fe–Zn–Zr@HZSM-5(50)	21.2	42.8	0.1	57.1	1.5	42.3	56.2	90.6	6.4
Fe–Zn–Zr@HZSM-5(100)	22.5	83.0	14.7	2.3	69.2	20.3	10.5	87.6	0.0
Fe–Zn–Zr/HZSM-5(50)	19.7	45.1	0.0	54.9	1.4	55.0	43.6	74.4	19.9

Table S1. Reaction performances of Fe–Zn–Zr@HZSM-5 core–shell catalysts with different SiO_2/Al_2O_3 molar ratios of HZSM-5 on CO_2 hydrogenation.

5.0 MPa; 340 °C; 6 h; 3000 ml/g/h; H_2/CO_2/N_2=72/24/4; Fe–Zn–Zr:HZSM-5=4:1 (weight ratio).

Oxy=oxygen compounds (MeOH+Me₂O); HC=hydrocarbon.

 $I-C_{5+}=C_{5+}$ isoalkanes; $C_{5+}=C_{5+}$ hydrocarbons.

Fig. S1. In situ XRD patterns of Fe–Zn–Zr core. (a) Reduced at 340 °C with different time, (b) Reduced at different temperature and keep 0.5 h.

Fig. S2. (a) H_2 -TPR (b) XPS, and (c) NH_3 -TPD profiles of Fe–Zn–Zr core.

Complex	Total acid	Weak acid	Mediate acid	Strong acid
Samples	sitesª (μmol/g) sites ^b (μ		sites ^b (µmol/g)	sites ^b (µmol/g)
Fe–Zn–Zr	93.5	28.4	65.1	0.0
HZSM-5(100)	69.7	36.1	0.0	33.6
HZSM-5(50)	280.9	152.5	0.0	128.4
HZSM-5(38)	440.0	237.4	0.0	202.6
Fe–Zn–Zr@HZSM-5(100)°	55.3	12.7	28.4	14.2
Fe−Zn−Zr@HZSM-5(50)°	86.8	29.7	30.1	27.0
Fe−Zn−Zr@HZSM-5(38)°	92.0	35.6	24.1	32.3
Fe–Zn–Zr/HZSM-5(50)°	107.7	45.0	24.7	38.0

Table S2. Peak areas integrated from NH₃-TPD profiles of the different samples.

 $^{\rm b}$ Quantified by deconvolution of the NH₃-TPD profiles with Gaussian peaks (R²> 0.99).

^c Fe–Zn–Zr:HZSM-5=4:1(weight ratio)

Fig. S3. In situ DRIFT spectra of (a,b) CO₂ adsorption and (c,d) CO₂ hydrogenation on Fe–Zn–Zr core.

Fig. S4. In situ DRIFT spectra of (a,b) CO_2 adsorption and (c,d) CO_2 hydrogenation on Fe–Zn–Zr@HZSM-5(50) core– shell catalyst with Fe–Zn–Zr and HZSM-5 weight ratio of 6:1.

Fig. S5. NH₃-TPD profiles (a) and DRIFT spectra in the OH stretching region (b) of Fe–Zn–Zr@HZSM-5(50) core– shell catalysts with different Fe–Zn–Zr and HZSM-5 weight ratios.

Samples	Fe–Zn–Zr:HZSM-5 (weight ratio)ª	Total acid Sites ^b (μmol/g)	Weak acid Sites ^c (μmol/g)	Mediate acid Sites ^c (μmol/g)	Strong acid Sites ^c (μmol/g)
Fe–Zn–Zr@HZSM-5(10:1)	17.3:1	73.0	19.8	33.9	19.3
Fe–Zn–Zr@HZSM-5(8:1)	14.7:1	72.0	19.6	32.1	20.3
Fe–Zn–Zr@HZSM-5(6:1)	13.3:1	64.1	21.9	20.7	21.5
Fe–Zn–Zr@HZSM-5(4:1)	7.9:1	86.8	29.7	30.1	27.0
Fe–Zn–Zr@HZSM-5(3:1)	6.3:1	95.7	34.2	24.2	37.3

Table S3. Bulk contents and peak areas integrated from NH₃-TPD profiles of Fe–Zn–Zr@HZSM-5(50) core–shell catalysts with different Fe–Zn–Zr and HZSM-5 weight ratios.

^a Determined by ICP.

 $^{\rm b}$ Determined by $\rm NH_3\text{-}TPD.$

 c Quantified by deconvolution of the NH₃-TPD profiles with Gaussian peaks (R²> 0.99).

Fig. S6. NH₃-TPD profiles (a) and DRIFT spectra in the OH stretching region (b) of Fe–Zn–Zr/HZSM-5(50) granular–mixing catalysts with different Fe–Zn–Zr and HZSM-5 weight ratios.

Samples	Total acid	Weak acid	Mediate acid	Strong acid	
Samples	sites ^a (µmol/g)	sites ^b (µmol/g)	sites ^b (µmol/g)	sites ^b (µmol/g)	
Fe–Zn–Zr/HZSM-5(20:1)	90.5	29.1	34.8	26.6	
Fe–Zn–Zr/HZSM-5(12:1)	77.6	28.2	18.8	30.6	
Fe–Zn–Zr/HZSM-5(8:1)	91.8	29.7	27.7	34.4	
Fe–Zn–Zr/HZSM-5(4:1)	107.7	45.0	24.7	38.0	

Table S4. Peak areas integrated from NH_3 -TPD profiles of Fe–Zn–Zr/HZSM-5(50) granular-mixing catalysts with different Fe–Zn–Zr and HZSM-5 weight ratios.

 $^{\rm b}$ Quantified by deconvolution of the NH₃-TPD profiles with Gaussian peaks (R²> 0.99).

Fig. S7. CO₂ conversion and hydrocarbon distribution of CO₂ hydrogenation to gasoline over Fe–Zn–Zr/HZSM-5(50) granular–mixing catalysts with different Fe–Zn–Zr and HZSM-5 weight ratios. (Reaction conditions: 5.0 MPa; 340 °C; 2 h; 3000 ml/g/h; H₂/CO₂/N₂=72/24/4.)

Fig. S8. Characterizations of HZSM-5(50) zeolite and Fe–Zn–Zr/HZSM-5(4:1) granular–mixing catalysts with SiO_2/Al_2O_3 of 50 before and after soaking by basic silica gel: (a, b) DRIFT spectra in the OH stretching region, (c) NH_3 -TPD profiles.

Table S5. Peak areas integrated from NH₃-TPD profiles of Fe–Zn–Zr/HZSM-5(50) granular–mixing catalysts before and after soaking by basic silica gel.

	•				
Commission	Total acid	Weak acid	Mediate acid	Strong acid	
Samples	sites ^a (µmol/g)	sites ^b (µmol/g)	sites ^b (µmol/g)	sites ^b (µmol/g)	
Fe–Zn–Zr/HZSM-5(4:1)	107.7	45.0	24.7	38.0	
Fe–Zn–Zr/HZSM-5-basic	77.6	20 E	10.2	20.0	
silica gel(4:1)	77.0	20.3	15.2	23.5	

 $^{\rm b}$ Quantified by deconvolution of the NH₃-TPD profiles with Gaussian peaks (R²> 0.99).

inydrogenation:									
Space	со	Salactiv	(ity (C mol%)		Hydrocarbon				Aromotios/
velocity	$(\%)^2$			distribution (C-mol %)			-C ₅₊ /		
(mL/g/h)	COIIV.(78)	CO	Оху	HC	C_1	C_2 - C_4	C ₅₊	C ₅₊ (70)	C ₅₊ (/0)
3000	22.8	39.1	0.1	60.9	2.2	39.8	58.0	91.5	6.0
20000	12.3	34.3	5.0	60.7	2.4	44.0	53.7	89.6	7.1

Table S6. Reaction performances of Fe–Zn–Zr@HZSM-5(50) core–shell catalyst (Fe–Zn–Zr:HZSM-5=6:1) on CO_2 hydrogenation.

5.0 MPa; 340 °C; 2 h; H₂/CO₂/N₂=72/24/4.

Oxy=oxygen compounds (MeOH+Me₂O); HC=hydrocarbon.

 $\mathsf{I-C}_{5+}=\mathsf{C}_{5+} \text{ isoalkanes; } \mathsf{C}_{5+}=\mathsf{C}_{5+} \text{ hydrocarbons.}$

Fig. S9. Hydrocarbon distribution of Fe–Zn–Zr@HZSM-5(50) core–shell catalyst (Fe–Zn–Zr:HZSM-5=6:1) on CO₂ hydrogenation with different space velocity. (a) 3000 mL/g/h, (b) 20000 mL/g/h.

Fig. S10. NH₃-TPD profiles (a) and DRIFT spectra in the OH stretching region (b) of Fe–Zn–Zr@HZSM-5(38) core– shell catalysts with different Fe–Zn–Zr and HZSM-5 weight ratios.

Complee	Total acid	Weak acid	Mediate acid	Strong acid
Samples	sitesª (µmol/g)	sites ^b (µmol/g)	sites ^b (µmol/g)	sites ^b (µmol/g)
Fe–Zn–Zr@HZSM-5(12:1)	89.1	34.2	32.8	22.1
Fe–Zn–Zr@HZSM-5(8:1)	83.5	29.1	31.5	22.9
Fe–Zn–Zr@HZSM-5(6:1)	88.5	27.2	33.3	28.0
Fe–Zn–Zr@HZSM-5(4:1)	92.0	35.6	24.1	32.3

Table S7. Peak areas integrated from NH_3 -TPD profiles of Fe–Zn–Zr@HZSM-5(38) core–shell catalysts with different Fe–Zn–Zr and HZSM-5 weight ratios.

 $^{\rm b}$ Quantified by deconvolution of the NH3-TPD profiles with Gaussian peaks (R²> 0.99).