Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Piezotronic-Enhanced Oxygen Evolution Reaction Enabled by a

Au/MoS₂ Nanosheet Catalyst

Juanjuan Bian,^{1,2} and Chunwen Sun^{1,2*}

¹CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China

²College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 10 0049, P. R. China

* Corresponding authors.

Tel.: +86-10-82854648, fax: +86-10-82854648. Emails: sunchunwen@binn.cas.cn (C.W. Sun)

Elements The tested mass content (wt	
Au	0.2668
Мо	46.0310
S	26.1795

 Table S1. ICP data of the contents of different elements.

Fig. S1 (a) ADF STEM image of MoS_2 nanosheets. (b,c) The corresponding elemental mappings of Mo and S of the MoS_2 nanosheets.

Fig. S2 (a) ADF STEM image of $Au-MoS_2$ nanosheets. (b-d) The corresponding elemental mappings of Mo, S and Au of the $Au-MoS_2$ nanosheets.

Fig. S3 Comparison of OER performances of the pure MoS_2 and $3mol \% Au-MoS_2$ catalysts.

Fig. S4 LSV curves of the Au nanoparticles tested under normal condition and with ultrasonic condition.

Fig. S5 The electrochemical impedance spectra of the pure MoS_2 and 3mol % Au- MoS_2 catalysts.

Fig. S6 Comparison of OER performance of the MoS₂ under normal condition and rotating condition at 1600 rpm.

Fig. S7 The cyclic voltammetry (CV) curves in the non-faradaic region for MoS_2 catalyst (a) under normal condition and (c) with ultrasonic condition. Current-scan rates of MoS_2 catalyst (b) under normal condition and (d) with ultrasonic condition.

Fig. S8 The CV curves in the non-faradaic region at various scan rates for 3mol % Au-MoS₂ catalyst (a) under normal condition and (c) with ultrasonic condition. Current-scan rates of 3mol % Au-MoS₂ catalyst (b) under normal condition and (d) with ultrasonic condition.

Fig. S9 The photo of the piezo-enhanced catalytic decomposition of RhB dye solution under different conditions. A case shows pure RhB dye reaction without catalyst. B and D cases represent RhB dye reactions for MoS_2 catalyst without and with vibration, respectively. C and E cases are the RhB dye reactions for 3mol % Au-MoS₂ catalyst without vibration and under ultrasonic vibration, respectively.

Catalyst	OFR	Dye degradation performance	Refs
Catalyst	OLK	Dye degradation performance	Reis.
	performance		
	(onset potential)		
Au-MoS ₂	1.52 V	almost 100% after 30 minutes	This
			work
BaTiO _{3-x}	1.6 V	-	S 1
MoS ₂ nanosheets	-	86.9% under 20 min light	S2
		irradiation	
$Bi_4Ti_3O_{12}$	-	62.1% after 4 h illumination	S3
NCNF-900	1.7 V	-	S4
Ag ₂ O-BaTiO ₃	-	totally degraded within 1.5 h	S5
Co ₃ O ₄	1.62 V	-	S 6

Table S2. Comparison of the electrochemical performance and dye degradation

 performance with different catalysts.

Fig. S10 The energy band potential diagrams. (a) The energy bands of bulk MoS_2 catalyst. (b) The energy bands of Au-MoS₂ catalyst under equilibrium. (c) The band potential with bulk MoS_2 piezo-catalyst immerging in electrolyte. (d) The band potential with Au-MoS₂ piezo-catalyst immerging in electrolyte.

References

- S1. C-F. Chen, G. King, R.M. Dickerson, P. A. Papin, S. Gupta, W. Kellogg and G. Wu, Nano Energy, 2015, 13, 423–432.
- S2. W. J. Zhou, Z. Y. Yin, Y. P. Du, X. Huang, Z. Y. Zeng, Z. X. Fan, H. Liu, J. Y. Wang and
 H. Zhang, *Small*, 2013, 9, 140–147.
- S3. S. C. Tu, H. W. Huang, T. R. Zhang and Y. H. Zhang, *Appl. Catal. B: Environ.*, 2017, 219, 550–562.
- S4. Q. Liu, Y. B. Wang, L. M. Dai and J. N. Yao, *Adv. Mater.*, 2016, **28**, 3000–3006.
- S5. H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu and Z. L. Wang, *Nano Lett.*, 2015, **15**, 2372–2379.
- S6. D. D. Wang, X. Chen, D. G. Evans and W. S. Yang, *Nanoscale*, 2013, 5, 5312-5315.